

Color
Computer
Graphics

Color
Computer
Graphics

by Ron Clark

ARCsoft Publishers
WOODSBORO, MARYLAND

ARCsoft Books by Ron Clark
I 101 Color Computer Programming Tips & Tricks
II 55 Color Computer Programs for Home, School

& Office
Ill 55 MORE Color Computer Programs for Home,

School & Office

IV The Color Computer Songbook
V My Buttons Are Blue and Other Love Poems

from the Digital Heart of an Electronic Computer
VI Color Computer Graphics

puter can handle Is limited only t,y tl1e imagination i11 this
book, we have attempted to descrihe ways to e)(pa11d the
usefulness of the computer by exploiting its vidoo
graphics capability for transmitting data from the com

puter to you.
This book is written for newcomers and heglnners,

as well as for more advanced users of microcomputers. It
contains many ready-to-run programs. You type them In
and the machine does the rest. This volume Is 1:.1 compa
nion to 101 Color Computer Programming Tips and
Tricks, 55 Color Computer Programs for Home, School &
Office, 55 MORE Color Computer Programs for Home,
School & Office, The Color Computer Songbook, and My
Buttons are Blue and Other Love Poems from the Digital

Heart of an Electronic Computer.
-Ron Clark

Preface

Color video graphics is the most exciting artform to

come along in this century. It also is the most useful tool

in business and education since the printing press.

If a picture is worth a thousand words, a moving pic

ture is worth a thousand still pictures. The video-graphics

picture, even when frozen as a single still image, is

equivalent to a moving picture because of the ability of

the computer to make instantaneous chal'lges, to correct

and progress, to add and eliminate.

Businessmen, teachers and students have been

heavily impressed with the ability of graphics to transmit

endless streams of useful data quickly. Millions have

thrilled to the avante garde forms being devised by artists.

All of the programs in this book were written on, and

thoroughly tested with, a TRS-80 Color Computer, a ver

satile microcomputer system with a small lightweight

configuration ar.d a flexible version of the BASIC pro

gramming language. The number of jobs the Color Com-

FIRST EDITION
FIRST PRINTING

© 1982 by ARCsoft Publishers, P.O. Box 132, Woodsboro, MD 21798 USA

Printed in the United States of America

Reproduction or publication of the contents of this book, in any manner,
without express permission of the publisher, is prohibited. No liability is
assumed with respect to the use of the information herein.

Library of Congress cataloging-in-publication data:
Clark, Ron 1940-

Color Computer Graphics
Includes index
Summary: Advice for beginning computer programmers using the
BASIC programming language.
1. Computer graphics.
2. BASIC (computer program language).
3. TRS-80 (Computer)-Programming
4. Programming
5. Computers
I. Title.
T385.C53 001.64'43 81-22788
ISBN 0-86668-012-8 (pbk.) AACR2

LC. number: 81-22788

Trademark credits and software copyrights:
TRS-80 is a trademark of Tandy Corp./Radio Shack.
Color BASIC and Extended Color BASIC system software are
copyright 1980 by Tandy Corp. and Microsoft.
Programming advice and applications software in this book are
copyright 1982 by ARCsoft Publishers.

l:illN 0-86668-012-8

Table of Contents

Introduction 11

Getting Started 17

Adding Color 49

Circles and Other Shapes 65

Making Things Move 85

Color Graphics Programs 99

Appendix 122

Index 126

Introduction

Introduction

Many programs have been written for the TRS-80

Color Computer and other popular microcomputer

systems. But little has been said about the most powerful

functions of these computers: graphics.

The aim of this book is to provide a complete basic

introduction to the elements of computer video graphics,

especially as used in the TRS-80 Color Computer. Many

complete ready-to-run graphics programs are included for
your learn-by-doing fun.

This book is not so much about how to write

business, education or game programs but, rather, how to

write video graphics programs which can be used to

enhance any other useful or just-for-fun software. The

book is intended for newcomers and beginners, as well as
old-timers in the programming game who never got

around to adding graphics to their capabilities.
The computer instructions in this book are BASIC

language words as found in Color BASIC and Extended

Color BASIC. Each program has been thoroughly tested

on the TRS-80 Color Computer and is ready-to-run.

11

Other computers
These programs will run on other microcomputer

systems programmed in BASIC but you'll have to make
modifications to the program lines. Graphics commands
are among the most non-standard parts of BASIC. Each
computer manufacturer finds new and different words to

make his system at least slightly, if not greatly different
from other systems on the market.

One of the varieties of BASIC most like the Extended
Color BASIC on the TRS-80 Color Computer, and in this
book, is that found on the IBM Personal Computer. The in
struction to set up the graphics mode on the IBM P.C. is
different but most of the other graphics instructions are

the same or very similar. IBM P.C. owners will find the pro
grams, and the instruction in this book, very useful.

For owners of other systems, graphics and sound in
structions will vary more widely. However, you can use
the graphics instruction in this book and make only

necessary modifications to program lines following the
list of BASIC commands, instructions, functions, and
statements found in your computer's owner's manual.
Naturally, programs depending upon color for enhance

ment won't function on black-and-white-only TV sets, one
color video monitors, and in one-color computers.

Using this book
We have attempted to start at a very elementary level

of previous computer knowledge. We assume you know
how to turn on your computer, hook up whatever ac
cessories you own, etc. You probably have written begin
ning programs as suggested by your computer's owner's
manual.

This book has chapters explaining text versus
graphics, colors versus black-and-white, dots, lines,
boxes, circles, coloring objects, making objects move,
and more. You will be able to come to grips with the
various BASIC graphics commands, after reading these

pages, and use the new knowledge to enhance your other
useful and fun computer programs.

The latter part of the book includes several longer
color video graphics programs for you to type and run. An

appendix at the end of the book provides a handy list of

12

functions and statements in Color BASIC and Extended
Color BASIC, operators, video control codes, graphic
character codes, control keys, special characters, and
error messages.

REMarks

As you read through the programs in this book, you
will find very few REM or remark statements. The author's
training in writing BASIC language computer programs in
cluded an emphasis on brevity and saving memory space.
A sharp editing pencil was in order-and still is. Remarks
and explanations, within the software, were out. Honing,
fine-tuning and waste trimming were in. Use of coding
form programming worksheets, such as the Color Com
puter BASIC Coding Form, the Universal BASIC Coding
Form, and other similar tablets published by ARCsoft
Publishers, was important. The objective always was, and
still is, to make the most efficient use of available
memory.

Some of the strings used with the DRAW instruction
can be very lengthy. With a stack of such strings in a pro
gram, it's easy to forget which string draws what. So
sometimes we have used the apostrophe (') with these
strings. The apostrophe is a shorthand symbol, or ab
breviation, for REM. We use it to indicate what the strings
draw.

No two the same

Even though they may be headed toward the same
goal, no two programmers will write exactly the same list
of BASIC program lines from scratch. As you type the
various programs in this book into your computer, you
probably will make slight changes to suit your personal
needs and interests. For instance, exact wording of
PRINT statements can be changed. Two or more pro
grams can be combined into one grand scheme. Applica
tions will vary.

If you want to load more than one of these programs
into your computer at the same time, be sure to use dif
ferent sets of line numbers for different programs.
Remember that changing line numbers may necessitate

13

changing GOTO, GOSUB IF/THEN and other internal
references to line numbers.

The author would like to hear of improvement ideas
as well as suggestions for future volumes in this series of
books. He may be addressed in care of ARCsoft

Publishers, P.O. Box 132, Woodsboro, MD 21798 USA.

14

Getting Started

Getting Started

Your personal computer is a system with four major

parts: input, processor, memory and output.
Processor and memory are the innards, the brain

which does the internal work you ask for.
Input is composed of the various parts of the equip

ment which allow you talk to the computer, to send in in
formation for the memory to store and for the processor
to work on. Input includes the typewriter-style keyboard, a
tape, a disk, etc.

Output is the equipment available for the computer
to talk back to you, to report the results of work you asked
it to do. Output includes the video display screen, a line
printer, or other devices.

This book is concerned with a special use of one
piece of output equipment, the video display screen. We
hope you will learn from these pages how to make the
computer display useful pictures on the face of the video
tube.

When you turn the power on, the computer knows

17

how to operate because the manufacturer has written

software and inserted it into the computer's innards. That

internal program is system software.
The computer can go beyond its basic internal

housekeeping functions to do real-world jobs you ask of it

because you write additional programs for it to follow.

Your added instructions are applications software.
This book, then, will show you how to write applica

tions software especially to create pictures on the video
display.

You hear a lot of talk, these days, about various types

of resolution. Some graphics are said to be low
resolution. Some are high-resolution. There is a middle

ground which could be thought of as medium resolution.
What's the difference?

Low vs. high resolution
Letters, symbols, numbers, entire words, pictures,

charts, graphs, anything displayed on the face of your TV

screer:i or video display monitor is created as a series of

lighted dots against a dark background. Imagine your TV
screen as a large grid of tiny square rectangles like a
piece of graph paper. Suppose you wanted to create the

letter P on that grid, as in this approximate drawing:

The overall screen is dark. The light spots, when viewed

together, create the image of the letter P. Your education
leads you to see the letter P rather than an assortment of
13 white spots against a black background.

To create the letter P on the face of your TV, the com
puter lights several small rectangular dots in a pattern

you recognize as P. The same for the letters C and A and

18

T, the number 1 or the symbol we call an exclamation
point or any others you can think of:

••
■
■
■
■

••••

••••

I
■
•
....

■
■ •

■ •
···-··

• ■
• •

• •••••• ■
• •
• ■
• •
•
• •

The size of the face of a TV set is fixed, but it is possible
to make the lighted dots larger or smaller. The smaller the

dot, the more dots we can squeeze onto the face of the
video screen. like creating graph paper with ever-smaller
squares, the more dots we squeeze onto the face of the
video tube, the less likely you are to be able to see any
one dot.

Fewer dots filling a screen mean each dot is bigger,
more easily seen. More dots filling a screen mean smaller
dots, each less easily seen. For example, look at these

two grids. Each is the same size. But one has twice as
many small squares in it.

Let's try our letter Pin each of two grids. The Pon the left,

19

below, contains more dots. We'll call it "high resolution"

since it has a higher number of dots in the same space.
The P on the right contains fewer dots. We'll call it

"low resolution" since it contains a lower number of dots
in the same space:

--

I
--

High Resolution Low Resolution

If we had a P with more dots than in our low-resolution P,
but with fewer dots than in our high-resolution P, we
would have a medium-resolution P.

All information transmitted to you from the computer
on the video screen is created the same way, as a pattern
of lighted dots.

Text vs. graphics mode
Radio Shack, like most other manufacturers of per

sonal computers, makes its color computer so you have a
choice of a text mode or a graphics mode. These modes
refer to the kind of display you can make the computer
present on the video tube.

Text mode is used for common letters, numbers,
symbols, words, formulas and other kinds of frequently
used English-language communication. In the text mode,
the computer calls upon data imbedded in its permanent

memory to create the patterns of lighted dots we will
recognize as letters of the alphabet or numbers or sym
bols.

The quantities and descriptions of those patterns of
lighted dots are previously established inside the com
puter and beyond your control. Call for the letter A and

20

you'll always get the same A. You cannot make that text

mode A short-legged or fatter or slimmer. In text mode, an

A is an A is an A ...

Graphics mode, on the other hand, is your own per

sonal sketch pad. You can draw shapes and sizes of all

sorts of characters and figures to suit your own desires.

In the graphics mode you can't call on the A stored in

the computer's memory. If you want an A you have to
create an A. In fact, the many letters, numbers and sym

bols provided by the computer in text mode must be

created individually if wanted in the video mode. Later in

this book we'll show you how to draw letters on the

screen in the graphics mode.
When you turn power on, your color computer wakes

up in the text mode. Many of the BASIC words you use in

programs automatically create text displays. For in

stance, use of the PRINT instruction makes a text display.
Even if you are in the graphics-screen mode, the com

puter will switch back to text mode to display your

message when it encounters a PRINT instruction.

To switch your computer into the graphics mode, you

must write the BASIC word SCREEN into your program.

When the computer encounters the word SCREEN, it

actually takes two commands from you. One is the type of
screen you want, whether text or graphics. The second is
the set of colors you want. More about colors later.

You tell the computer which screen type you want by

using either the number zero or the number 1 after the

word SCREEN. Here's the correct format for using the

word SCREEN:

SCREEN type, color set

If you want a text screen, use the number zero for type. If

you want the graphics screen, use the number 1 for type.

The color set choice also is either zero or one. Here's a

typical way to ask for graphics screen:

SCREEN 1, lJ

The number 1 immediately after the word SCREEN tells

the computer to switch to graphics mode.

Remember, the computer wakes up in text mode and

automatically switches to text mode when given instruc

tions intended for use in text mode. To get into graphics

21

mode you must intentionally switch the screen using the
SCREEN instruction.

Text-mode graphics
Remember the idea of low, medium and high

resolution graphics? Well, the fewest dots are found on
the screen in text mode. And it is possible to light up in
dividual dots while in text mode. Thus, low-resolution
graphics are possible in text mode. You can draw letters,

numbers, shapes and sizes while in text mode.
There are three other resolutions available when you

switch into the graphics mode. Each has more dots than
the text screen and can be called medium-resolution and

high-resolution.
For our purposes, we will refer to low-resolution

graphics as those in the text mode and medium and high
resolution as those done in graphics mode.

How do we do graphics in the text mode? Try this
brief program:

10 POKE 1200,255

20 END
The computer, when you run this program, will light up a
spot just above the center of the video display screen.
Now type in this program and RUN it:

100 RESET (30,10)

110 END

This will create a small square dot on the screen right
next to the one lighted by POKE 1200,225. The POKE'd

dot is orange and the RESET dot is black, both against a
green background. Be sure to include the parentheses in
the RESET program line.

Now add this small program to the list in your .. com-
puter's memory.

10
20

30

40

50

60
70

CLS
B$= INKEY$

IF BS="U" THEN Y=Y-1
IF B$= "D" THEN Y = Y + 1
IF B$ = "R" THEN X = X + 1
IF B$ = "L" THEN X = X·1
RESET (X,Y)

80 B$ = ""

90 GOTO 20

22

This program will allow you to draw a maze of letters or
numbers or other figures on the video screen in text
mode. Here's how it works:

When you type in the program and RUN it, line 10 will
erase everything from the screen. The BASIC word CLS as
used in the color computer stands for "clear the screen of
everything."

At line 20, the computer uses the powerful INKEY$
function to await your command from the keyboard. You
will use only four keys. The D key to draw a line
downward, the R key to draw a line to the right, the U key
to draw a line upward and the L key to draw a line to the
left. No other keys (except the BREAK key) will function
during this run.

Be sure to avoid drawing the line off the edge of the

screen or you will get an error message. Also, due to slow
response internally, you may have to press the letter key
you want more than once to get a response from the com
puter.

The computer will start with a black dot (against a
green background) in the upper left hand corner of the
video screen. Try pressing D a few times to move the line
down. Then press R to move the line in the right-hand
direction. Then press U to take the line up and L to take it
left. Now move the end of the line all over the screen, if
you like. Fun!

Video graph paper
Remember we said the TV screen can be imagined as

having a grid like graph paper? Well, like graph paper you
can precisely locate one spot on the face of the screen by
counting rows and columns. Here's a grid:

23

Now, suppose we thought of all the horizontal rows
as X and the vertical columns as Y. We might think of
lines moving across the TV screen as moving in the X
direction and lines moving up and down the screen as
moving in the Y direction.

.

1

�
.

't

"'"'- x,-....

Count the dots across the grid. Start on the left and count
toward the right. As you move toward the right hand side
of the grid you get more and more dots. The number of
dots is increasing. Each new dot adds one to the total.
Each new dot is plus one.

Now move backward, right to left. Each new dot sub
tracts one from the total previously counted. Each is
minus one.

To move left to right, then, add one to the value of X.
To move right to left, subtract one from the value of X.

-

Figure 8

24

Similarly, to go up or down the screen, the value of Y
changes.

Count the dots from bottom to top of the grid. Start at
the bottom and count toward the top. As you move toward
the top, you get more dots. The number of dots is increas

ing. Each new dot adds one to the total. Each new dot is

plus one.
Now, move downward, from top to bottom. Each new

dot subtracts one from the total previously counted. Each
is minus one.

To move bottom to top, then, add one to the value of
Y. To move from top to bottom, subtract one from the
value of Y.

I

i
J

"
s

"

7

1
.,
'"
II

It

,,
''
IS

+ -

Figure 9

You will note that the position where X,Y is 1,1 is in the
upper left hand corner of the grid in figures 8 and 9. What
would the lower left hand corner be? Since it is in the
fifteenth position for both X and Y it would be 15, 15.

Any position on the screen can be located as an X,Y
point. For instance 1,1 or 15,15 or 7,8. Where is 7,8?

I

,.
J
I/
5
"

7

'
q

10

II

12
If
,.;
,�

■

25

Remember we said there are several different resolu
tions possible for color computer graphics? The two
lowest-resolution sets are in the text mode and the three
highest-resolution sets are in the graphics mode. There
are, actually, a total of five different resolutions for you to
select from.

Imagining the video screen as a grid, here's the
number of X dots and Y dots available in each resolution:

Resolution Mode X by Y size

Low

Low

Text

Text

32 X 16

64 X 32

Medium Graphics 128 x 96

Medium Graphics 128 x 192

High Graphics 256 x 192

Thus, the lowest resolution offers 32 points across the
screen and 16 down the screen, for you to control. The
highest resolution offers 256 points across the screen
and 192 points down the screen for your use. With so
man5- more dots available in the high-resolution set, you
can see why drawings are of a finer quality. Drawings in
the text mode are much less refined.

Exact reproductions of these screen dot patterns are
shown as graph paper on pages 172 to 176 of the color
computer owner's manual, Going Ahead With Extended
Color BASIC.

Low-resolution lines

Let's use the two lowest-resolution sets to draw lines
on the screen.

Suppose we want a horizontal line drawn all the way
from left to right across the screen at about the midpoint
between top and bottom. We have two ways we can draw
that line in the text mode. We can use the PRINT @ in
struction or the RESET instruction. The first program
below uses the PRINT @ instruction:

10 FOR L = 224 TO 255
20 PRINT @ L,CHR$(255)
30 NEXT L

When using PRINT @ there are 32 points across the
screen and 16 down. That's 16 rows and 32 columns. The
upper left-hand corner is numbered 0,0 by the computer.
The upper right-hand corner, then is 31,0. For conve-

26

nience, the computer numbers each dot left to right, top

to bottom, across and down the video screen for the·
PRINT@ instruction. Thus the dot in X,Y position 31,0 is
numbered 31. The first dot in the second row, which is at

X,Y position 0,2 is numbered 32. The middle of the screen

is numbered 240. The lower left-hand corner is 480 and the
lower right-hand corner is 511.

If you use the PRINT @ instruction to create low
resolution, you must convert the X,Y position to one of

the sequential numbers.

That's why we use the numbers 224 to 255 in the

FOR/NEXT loop in the program above. The actual line is
drawn by the PRINT @ instruction in line 20. The
FOR/NEXT loop in lines 10 and 30 cause the PRINT@ to

move across the screen from location 224 to location 255,
lighting dots as it progresses. The result of a run is a

bright orange line across the screen from left to right.
Note that the bright orange line is very thick. You

might even call it a bar. Thinner lines come with higher

resolution graphics, as you'll see later.

Now type in this additional program:
100 FOR X=0 TO 63
110 RESET (X,16)
120 NEXT X

Here we use the RESET instruction to create a line across
the screen immediately below the orange line drawn by

the last program.
RESET requires its instructions in the X,Y position

notation. We use the FOR/NEXT loop to cause points to
be RESET from position 0, 16 to 63, 16. The result is a fat
black line across the screen.

Video memory poke
You may recall the program with the line POKE

1200,255. That's yet another way to draw a line across the

screen while in the text mode.
The computer knows at all times what it is displaying

on the video screen. The information about what is being
done with each dot is stored in memory. You can look into
memory with the PEEK instruction to see what is happen

ing at a particular location. The information at one

27

memory location will tell you what is happening at the

corresponding dot on the screen.

Similarly, you can change the contents of a memory
location using the POKE instruction. Try this program

again:
10 POKE 1200,255

Running that program line causes the screen character
identified by number 255 to be poked into memory loca

tion number 1200. The character numbered 255 is an

orange dot.

How can you draw a line with the POKE instruction?
Use the FOR/NEXT loop for repeated dots in a line.

200 FOR A= 1312 TO 1343

210 POKE A,255

220 NEXT A

Type in that program and run it. You'll find an orange bar
across the screen.

Now let's put the three line programs together and see

what results:
10 FOR L =224 TO 255

20 PRINT @ L, CHR$(255)

30 NEXT L

100 FOR X =OTO 63

110 RESET (X, 16)

120 NEXT X

200 FOR A= 1312 TO 1343

210 POKE A,255

220 NEXT A

300 GOTO 300

We'll add a never-ending loop at line 300 to freeze our pic
ture on the screen. To end the run, press the BREAK key.

See how it works? You have three different ways to

cause patterns of lighted dots to appear on the screen.

You can use the PRINT instruction with the @ symbol to
specify location. You can use RESET. And you can use

POKE.

Draw a box

Let's use these three kinds of low-resolution drawing

abilities to create some boxes on the video display. First,

type in this program which demonstrates the use of

PRINT @ to create an orange three-dimensional box:

28

10 CLS

20 DATA 11,12,13,14,15,16,17,18
30 DATA 19,20,42,51,52,73,82,84
40 DATA 104,113,116,135,144,148
50 DATA 166,167,168,169,170,171
60 DATA 172,173,174,175,180,198
70 DAT A 207,212,230,239,244,262
80 DAT A 271,275,294,303,306,326
90 DATA 335,337,358,367,368,390
100 DATA 391,392,393,394,395,396
110 DATA 397,398,399
200 FOR L = 1 TO 61
210 READ P
220 PRINT @ P,CHR$(255)
230 NEXT L

Figure 13 shows the resulting box. Each individual point,
lighted during program run, is stored in the data lines
numbered 20 through 110. The FOR/NEXT loop in lines

200-230 causes the DATA to be read 61 times. The actual
PRINT @ instruction is located in line 220.

The fat orange dot, represented by the character

number 255, is printed 61 times during the loop operation.

Figure 13

29

Each such printing is at a different location. The end

result is a group of orange dots arranged in a pattern to
look like a three-dimensional box.

Now let's try to make the same box using the POKE

instruction. We will POKE character number 255 into a set

of video-memory locations with a box on the screen as a
result.

For convenience we have made most of the program

exactly the same as that you just typed and used for the
PRINT @ example. We only make changes to lines 220 to

240. Lines 10 through 210 remain unchanged. Change

these lines:
220 N = P + 1060
230 POKE N,255

240 N EXT L
When you run this program you will get the same box as
before. See figure 13. The difference is in the way you
create the box on the screen.

With PRINT @ you instructed the computer to

display a character at a specific location on the screen.
With POKE you instruct the computer to put the character
in memory at locations where it stores video-screen infor
mation. The computer looks in a video-screen memory
location, sees the printable character you placed there

and prints it on the screen. Either way, you get the orange
box.

Now use RESET to create the box. Remember we

said there are two low resolutions available in the text

mode? PRINT@ and POKE, as we used them here, create
the lowest-possible resolution of the box. RESET will be

the higher of the two low resolutions available in the text

mode. RESET has twice as many dots available. So, using
the same points, our box will be only half as large. It is, in
effect, drawn with finer detail.

PRINT @ uses 32 points across the screen and 16
points down the screen. RESET uses 64 points across and
32 down.

Using RESET you specify individual screen locations

by X,Y. Here's a program to draw our three-dimensional

box (in black) on the video screen:
10FORX=8TO17
20 RESET (X,2)

30

30 NEXT X

40 RESET (7,3)

50 RESET (16,3)
60 RESET (17,3)
70 RESET (6,4)
80 RESET (15,4)
90 RESET (17,4)

100 RESET (5,5)
110 RESET (14,5)
120 RESET (17,5)
130 RESET (4,6)
140 RESET (13,6)
150 RESET (17,6)
160 FOR X=3 TO 12
170 RESET (X,7)

180 NEXT X
190 RESET (17,7)
200 RESET (3,8)
210 RESET (12,8)
220 RESET (17,8)
230 RESET (3,9)
240 RESET (12,9)
250 RESET (15,9)
260 RESET (3,10)
270 RESET (12,10)
280 RESET (16,10)
290 RESET (3,11)
300 RESET (12,11)
310 RESET 15,11)
320 RESET (3,12)
330 RESET (12,12)
340 RESET (14,12)
350 RESET (3,13)

360 RESET (12,13)
370 RESET (13, 13)
380 FOR X=3 TO 12
390 RESET (X,14)
400 NEXT X
500 GO TO 500

Again, we've added a never-ending loop at line 500 to

freeze the picture. Press the BREAK key to end the run.
As you can see from the program listing, use of

31

RESET in this case drew a smaller slightly-higher

resolution box but the program used more memory. The
number of program lines is greater than the number re

quired to draw the same box using the PRINT @ and
POKE instructions.

The main advantage to making video drawings in the

text mode is the ease of adding words, numbers and other

labels to your art. For example, suppose you want to
create a bar graph on the screen. Type in this program:

10
20
30
40
50
60
70
80
90

100
110
120
130
140
1 50
160
1 70
180
190
200
210
220
230
240
250
260
2 70
280
290
300

32

CLEAR:CLS
F=lOOOOO
LINE INPUT II 1978 PROFITS:
V=VAL(VV$):V=V/F
LINE INPUT II 19 79 PROFITS:
W=VAL(WW$):W=W/F
LINE INPUT "1980 PROFITS:
X=VAL(XX$) :X-X/F
LINE INPUT "1981 PROFITS:
Y=VAL(YY$):Y Y/F
LINE INPUT "198? PROtITS:
Z=VAL(ZZ$) :Z-Z/F
CLS
PRINT @ 74, "PROFITS"
PRINT @ 128,"1978"
PRINT @ 192,"1979"
PRINT @ 256, "1980"
PRINT @ 320, "1981"
PRINT @ 384, "1982"
PRINT @ 133,STRING$(V,176)
PRINT @ 197,STRING$(W,176)
PRINT @ 261,STRING$(X,176)
PRINT @ 325,STRING$(Y,176)
PRINT @ 389,STRING$(Z,176)
PRINT @ 421,1
PRINT @ 423,3
PRINT @ 425,5
PRINT @ 427, 7
PRINT @ 429,9

$"; VV$

$";WW$

$";XX$

$"; VY$

$";7Z$

PRINT @ 432,"10 X $100,000"

Sample Run

RUN ENTER

1978 PROFITS:
675345 ENTER
1979 PROFITS:
465987 EtHER
1980 PROFITS:
789456 ENTER
1981 PROFITS:
998567 ENTER
1982 PROFITS:
1250455 ENTER

1978

1979 -

1980

1981

1982

$

$

$

$

$

PROFITS

l 3 5 7 9 10 X $100,000

See how easy it is to add the years in a vertical column on

the left-hand side of the screen and the dollar amounts
across the bottom. And, of course, the label at the top of

the screen.

Bar Graphs
Here's a convenient way to convert information or

data to an easy-to-read bar graph.

10 CLS
20 A-RND(26):B=RND(2G):C=RND(26)
30 D-RND(26) :E=RND(26) :F=RND(26)

100 PRINT@ 32,"1981 ";STRING$(A,191)
110 PRINT@ 96,"1982 ";STRING$(B,191)

33

120 PRINT@ 160,"1983 ";STRING$(C.191)
130 PRINT@ 224,"1984 ";STRING$(D,191)
140 PRINT@ 288,"1985 ";STRINGS(E,191)
150 PRINT@ 352,"1986 ";STRING$(F,191)
200 FOR H=388 TO 414 STEP 3
210 PRINT@ H,H-388
220 NEXT H
230 PRINT@ 424,"MILLIONS OF DOLLARS"
300 A$=INKEY$
310 IF A$=""THEN 300
320 GOTO 10

This program uses PRINT @ to create the bars of a graph.
Main construction of the graph is program lines 100 to
220. The length of the bars in the graph are controlled by
the variables A, B, C, D, E and Fin lines 100 to 150.

If you want to feed data from some other computa
tion into this graph, you must arrive with values stored in
A through F. The values should be in the range of zero to
26.

For demonstration purposes, we get those values
here by using the random number generator in lines 20
and 30. Line 20 creates values we need for A, B and C.
Line 30 generates numbers for D, E and F.

In this case, we have made the bars of the graph red.
That's why we use the character number 191 at the ends
of lines 100 to 150 in the STRING$ function. You can make
your bars other colors by substituting these character
numbers:

Number Color

128 Black
143 Green
159 Yellow
175 Blue
191 Red
207 Buff
223 Cyan
239 Magenta
255 Orange

34

The Y-axis of the graph is labeled with year dates from
1981 to 1986 (lines 100 to 150) in our sample program. The
X-axis is labeled by lines 200 to 230. The loop in lines 200
to 220 prints the row of numbers beneath the bars.

Lines 300 to 320 are used to allow you to generate
new random numbers and new graphs at the press of any
keyboard key.

Graphics Mode
It may be easy to add labels to artwork in the text

mode but the big clunky drawings leave something to be
desired. You need to know how to get more streamlined
artwork. You need the graphics mode.

The switch to convert the display from text mode to
graphics mode is the instruction SCREEN. Remember it
is used in the form:

SCREEN type, color set

Let's compose a small program which will demonstrate
this switching of the display. First we need to generate
some "garbage" on the text screen:

10 FOR L=1 TO 9

20 PRINT "SCREEN GARBAGE"

30 NEXT L

If you run that three-line program you'll get nine lines of
the words SCREEN GARBAGE. The computer will remain
in the text mode and follow the text-mode instruction,
PRINT, to make the display. Now add these two lines:

40 SCREEN 1,0

50 GOTO 50

When you run the program, action starts at line 10 but
everything happens so quickly you'll probably not see the
results of the PRINT instruction in line 20. What you pro
bably will see will be a full blank screen of green color.
This is the graphics screen. You may use a variety of
graphics commands to instruct the computer to make
drawings on that graphics screen.

For the moment, the graphics screen is blank as the
computer only was instructed to turn it on (line 40) and
freeze it at that point (line 50).

Try modifying line 40 so that the type of screen called
for is the text screen. It should then look like this:

40 SCREEN 0,0

35

Running the program with SCREEN 0,0 results in the

display remaining in the text mode so you see the lines

which say GARBAGE SCREEN. Now change it back to

SCREEN 1,0. It should look like this:
40 SCREEN 1,0

Color in the computer is so fascinating, let's stop and

play with that for a moment. Change the color set number

in line 40 to a one. It should look like this:
40 SCREEN 1,1

Now, when you run the program, the computer will en

counter the instruction at line 40 to switch to graphics

mode. And, in that same line, it will find an instruction to
change color sets. The screen will change from a bright

green to a light background.

Now put the instruction back to SCREEN 1,0 so line

40 looks like this:

40 SCREEN 1,0

Also delete line 50 so our next additions to the program

will run after line 40.

A higher-resolution line
Delete line 50 and add the following lines, 100 and

110, to the program:

100 LINE(0, 110)-(255, 110),PSET

110 GOTO 110

Try running the program with the new lines. What do you

get? You should find a line from the left-hand edge of the

graphics screen to the right-hand edge of the graphics

screen, about half-way down the screen.
One thing should be very noticeable at this point.

There is a border around the graphics screen. You can't

make the computer draw out in that border. Using color

set zero, you will see the same color screen inside the

graphics area as outside in the border. If you look closely

at the face of your video display you should be able to see

a faint line around the graphics area. Most TV sets will

show a very slight difference of display between the

border and the graphics area.

The important thing to remember is that your artwork

will be confined to the graphics area with none out in the

border. When we refer to the number of points across or

36

up and down the graphics screen, we mean inside that

graphics area, not out in the border.

A flashy box
The result of running the program, including lines

100 and 110, will be a line across the graphics area. Now

you know of four ways to draw a line on the display.

Line 110, by the way, is our old friend, the frame

freezer. It is a never-ending loop to hold the last picture in

place. To end the run, press the BREAK key.

But where has our GARBAGE SCREEN message

gone? You will recall we printed nine lines of it on the text

screen but went on to the graphics screen so quickly it

looked as if it might have been lost. But, no. Press the

BREAK key.

The result is an ending of the program run and return

by the computer to the text screen. It displays whatever it

last had on the text screen because that was the last

thing stored in text-mode display memory.

In other words, we ordered the computer to display

nine lines of SCREEN GARBAGE. It did that and then

went on to other business. During the time it was doing

that other business, it remembered the display for the

text mode. When we ended the run, the machine switched

back out of the graphics mode to text mode and resumed

displaying the contents of its text screen memory.
Let's continue to build on this program we have

typed into the computer. Here's how to make the com

puter display the line we have drawn in the graphics mode

for only a moment and then erase the line:

200 FOR L=1 TO 200:NEXT L

300 PCLS

310 GOTO 310

Line 200 is a loop which appears to do nothing because it

makes no output from the computer. It is, in fact, a time

delay to keep the computer busy for a short period of time

so you can have time to see the line previously drawn on

the screen. To increase the length of time in the delay

loop, increase the number 200 in line 200. To decrease the

time in the loop, reduce the number 200 in line 200.

Line 300 clears the screen. Line 310 is our old friend,

37

the freeze-action instruction. We freeze action by causing

the computer to go into a never ending loop.

What's that P?

Remember how you use the instruction CLS to clear

the screen in text mode? Well, PCLS is the instruction to

clear the graphics video screen.

The P comes form the word page. In the Color Com

puter, we visualize a screen as a page. Each page uses up

1.5 kilobytes of memory or, to be more exact, 1536 bytes.

That is, each page of graphics-screen info is stored in

1536 memory locations. This video memory is large

enough to hold up to a total of eight pages. You can store

up to eight different pages of video drawings.

Radio Shack, in composing the various names for the

special BASIC graphics instructions in the color com

puter decided to attach the letter P to the beginnings of

many of those words. We'll soon know about PCLEAR,

PMODE, PCOPY, PPOINT, PSET and PRESET.

When they needed a screen-clear instruction

especially for the graphics screen, they chose PCLS as

we have used in line 300 above.

Since it's so easy to make a line disappear, wouldn't

it be nice to make it flash on and off? Delete line 310 and

try this program:

400 FOR L = 1 TO 200:NEXT L

410 GOTO 100

Remember that line 300 erased the line? Line 400 is a
time-delay loop to hold the erased display briefly. Then

line 410 pushes action back up to line 100 where the line

is redrawn.

The alternating displaying and erasing of the line

causes it to appear to blink on and off. It will do this

endlessly until you press the BREAK key.

For a fatter line, add a comma and the letters BF at

the end of line 100. Line 100 should look like this:

100 LIN E(0, 100)-(225, 110), PS ET, BF

The letter B at the end of the LINE instruction causes the

computer to draw a rectangle. The corners of the rec

tangle will be at X,Y locations 0,100 and 255,100 and 0,110

and 255,110. Since the LINE command takes up only one

38

program line, this is a fast and easy way to draw a box!

Even more exciting is the ability to till that box with a

color, different from the background, instantly. Use the

letter F at the end of the LINE instruction, after the Bas

we have done in line 100, to till in the box with color. F

stands tor till.

So, our revised line 100 changes the thin line into a

box and tills it with a color.

PMODE is not pie with ice cream
The PMODE instruction is used to select one of the

eight graphics pages and to put the computer into either

medium or high resolution. The format of the instruction

is:

PMODE mode, start-page
The modes are numbered from zero to five. The pages are

numbered one to eight. If you don't specify a mode, the

computer will select mode 2. Once you have selected a

mode, the computer stays in that mode until you select

another.

If you omit the PMODE statement, the computer

automatically switches into PM ODE 2, 1. If you don't tell it

the start page, it starts on the last page you were on.

Remember the computer sets aside 1536 bytes of

memory for each page of graphics. It automatically sets

up four such pages unless you tell it some other number

of pages. With each page needing 1.5K of memory set

aside, those four pages take up 6 of the 16 kilobytes in

your computer's memory.

You can change the number of pages set aside for

graphics by using the PCLEAR instruction. The format for

the instruction is:

PCLEAR number

The number is from one to eight. The computer wakes up,

when you turn its power on, at PCLEAR 4. It will stay at

PCLEAR 4 until you give it some other number. If four

pages are okay, you don't need to use the PCLEAR in

struction at al I.

PMODE, PCLS and other instructions have things to

do with the color choices you will make for your graphics

but we'll come back to that. First, let's take a closer look

at those graphics pages. Remember that you specify the

39

particular graphics page you see by using the PMODE
statement.

For the time being, we'll stick to the medium

resolution graphics in PMODE 1,, start-page. More on
resolutions later.

Here's a program to draw a line on the graphics

screen:
10 PMODE 1,1

20 PCLS

30 SCREEN 1,0

40 LINE(10,50)-(100,50),PSET

50 GOTO 50

You'll see PMODE 1,1 in the beginning of the program at

line 10. That instruction is telling the computer you are
going to use some medium-resolution graphics on

graphics page number 1.

Line 20 clears the screen and line 30 instructs the
computer to shift the screen into graphics. PMODE sets

up the computer to use page 1, PCLS clears the graphics

screen, and SCREEN switches the computer to display

ing graphics.
Line 40 draws the line on the screen and line 50 is our

familiar frame-freezing loop. Without line 50, the action

would come to the screen and be gone so quickly you
might not be able to see it! Line 50 holds the picture until
you press the BREAK key.

So, we have drawn a line from X,Y position 10,50 to
position 100,50 on page 1 and displayed it on the screen.

Now let's draw a line at a different location and on a dif
ferent page.

We'll select page 2 by using PMODE 1,2 and we'll

draw the line from X,Y position 10,100 to position 100,100.
Change line 50 and add lines 100 to 150 to our program:

50 FOR L = 1 TO 100:NEXT L

100 PMODE 1,2

110 PCLS

120 SCREEN 1,0

130 LINE(10,100)·(100,100),PSET

140 FOR L = 1 TO 100:NEXT L

150 GOTO 10

Remember that line 40 drew a line on the screen by plac

ing that line on page 1 and displaying it. Line 50 is a brief

40

time delay so you can observe that line for a moment.
Line 100 switches the computer's innards to working

on graphics page 2. Line 110 clears the graphics screen,
thus getting rid of the first line we drew. Line 120 keeps
the machine in the graphics-display mode.

Line 130 draws a new line at X,Y position 10,100 to
100,100. Line 140 is another brief time delay so you can
have a chance to observe, momentarily, the line drawn by
program-line 130. Then line 150 shoots action back up to
line 10 where the whole process starts over.

At line 10 the computer finds PMODE 1,1 and goes

back to writing on graphics page 1. The result of a con
tinuous run is a line alternating between two locations on
the screen. It gives the appearance of motion or anima
tion, as the line seems to jump back and forth.

PCOPYcat

You can copy drawings from one page to another us

ing the PCOPY instruction. The correct format is:
PCOPY source TO destination

The source can be any page on which you already have
drawn something. The destination can be any page as
long as you have used PCLEAR to set aside enough
memory.

There are eight graphics pages. The computer starts

its work day in PCLEAR 4. If you haven't changed that, you

can PCOPY from page 1, 2, 3, or 4 to page 1, 2, 3, or 4. If
you have used PCLEAR 5, PCLEAR 6, PCLEAR 7, or
PCLEAR 8, you can copy to one of those page numbers.

For example, suppose you have drawn something on
grahics page 1 and you want to copy that soinething onto
page 3. You would use PCOPY 1 TO 3 in your program.

Here's how to add a PCOPY demonstration to the
most-recent program we have been building. Delete line

150 and add lines 200 to 270:

200 PMODE 1,3

210 PCLS

220 SCREEN 1,0

230 PCOPY 1 TO 3

240 FOR L = 1 TO 100:NEXT L

250 PCLS

41

260 FOR L = 1 TO 100:NEXT L
270 GOTO 10

The use of PMODE 1,3 in line 200 causes the computer to
move to graphics page 3. The PCOPY instruction in line
230 moves the line drawn on page 1 (at program line 40)
onto page 3.

The line on page 3 is displayed and that display is
held for a moment by the time-delay loop in line 240. Then

line 250 clears the graphics display. That blank screen is
held for a moment by the time-delay loop in line 260. Then
action is pushed back up to line 10 where the program
starts over.

As a result of running lines 10 to 270 over and over
continuously you will see the line on page 1 displayed,
the different line on page 2 displayed and then the line on
page 3 displayed, all repeatedly until you press the
BREAK key.

The fat line moves

Just for fun, figure out a short program to set up graphics
page 1, clear the graphics screen, switch the computer in
to graphics mode and draw a fat line from left to right
across the screen. Here's one way:

10 PMODE 1,1
20 PCLS

30 SCREEN 1,0

40 FOR R =OTO 255
50 LINE(R,25)-(R,50),PSET,BF
60 NEXT R

70 GOTO 70
Remember that the BF on the end of line 50 causes the
LINE instruction to draw a box and fill it in with color. The
loop in lines 40 to 60 causes this to happen 256 times.

There are 256 points across the screen and 192 from
top to bottom. The line is 25 points fat and 256 wide.

Like that line movement? How about making it move
from right to left across the screen? Try changing line 40
so it reads like this:

40 FOR R = 255 TO 0 STEP -1

You can make this program run slightly faster and take up
fewer program lines, saving on memory space, by
telescoping lines 10, 20 and 30 into one line. Try this:

42

10 PMODE 1,1:PCLS:SCREEN 1,0

Computer graphics should look like graphics, right? ·
How about converting that fat horizontal line into a big let
ter T. Here's a way to modify the program by deleting line
70 and adding lines 100 to 130:

100 FORD =50 TO 190

110 LINE(110,D)-(145,D),PSET,BF

120 NEXT D

130 GO TO 130

The loop in lines 100 to 120 draws the vertical leg of the
letter T. Line 130 freezes the picture for you to see it. To
end the run, press BREAK.

Medium vs. high resolution
PMODE is a useful instruction. It not only is used to

designate the start page but also to select the resolution
of the graphics. The higher the resolution, the finer the
detail, the smaller the individual point lit on the screen.

We said a while ago that the Color Computer can per
form in five different graphics resolutions. The two lowest
resolutions, with the largest lit points, are in the text
mode. The three higher resolutions are in the graphics
mode. The number of points on the screen are:

resolution mode x by Y size
low text 32 X 16

low text 64 X 32

medium graphics 128 X 96

medium graphics 128 X 192

high graphics 256 X 192

The text mode is SCREEN type zero. Any time you call for
text output to the video screen, the computer
automatically does a SCREEN 0,0 switch. To get medium
or high-resolution graphics, you must use PMODE
number zero through five and SCREEN type one.

PMODE O and PMODE 1 get the 128x96 medium
resolution. PMODE 2 and PMODE 3 select medium
resolution of 128x192. PMODE 4 selects the 256x192
highest resolution.

43

PMODE # resolution X by Y size
0 medium 128 X 96

1 medium 128 X 96

2 medium 128 X 192

3 medium 128 X 192

4 high 256 x 192

PM ODE 4 lights the smallest individual dot on the screen.
The dot lit by PMODE 3 or PMODE 2 is twice as large as
that in PMODE 4.

The dot lit in PMODE O or PMODE 1 is twice as large

as the dot lit by PMODE 2 or PMODE 3, and four times as
large as that lit by PMODE 4.

High resolution needs four times as many dots lit to
fill the screen as PMODE O or PMODE 1.

The computer creates the larger dots by combining

two or four smaller dots. So, to draw on the screen you
must specify exact X,Y locations on a 256x192 grid. That

is, all locations are someplace between zero and 255
horizontally and O and 191 vertically. No matter which
PMODE number you are using, you still identify locations

on the screen using the 256x192 grid numbers.
For instance, 128x96 always is the center of the

graphics screen. And 255,191 always is the lower right

hand corner of the screen. The X,Y location 0,191 always
is the lower left corner and, of course, 0,0 is the upper left

corner. The upper right is 255,0 whether you are in
PMODE O or PMODE 4.

See the difference

Let's cut the jawboning and look at some pictures.
Here's a comparison of the various resolutions. This pro

gram uses a FOR/NEXT loop in lines 10 and 70 to make
the computer alternate between PMODE 0, PM ODE 2

and PMODE 4. A line is drawn in each resolution from X,Y
location 10,100 to location 100,100.

As you run this program, note that when the com

puter is in PMODE O the line is noticeably thicker. Each
dot in the PMODE O line has four times as many dots in it

as the line in PMODE 4. The PMODE 2 and PMODE 4 lines
are so much finer that the difference in size is harder to
see. However, the PMODE 2 line has twice as many dots
as the PMODE 4 line.

44

10 FOR L=0 TO 4 STEP 2
20 PMODE L

30 PCLS:SCREEN 1,0

40 FOR R=0 TO 5

50 LINE(l0,100)-(100,100),PSET

60 NEXT R

70 NEXT L

80 GOTO 10

Here's an easier way to see the difference. Change

program line 50 so the computer draws a box, fills it with
color each time:

50 LINE(10,50)-(100,100),PSET,BF

When you run the revised program, you will be able to see
the difference in the number of dots which have to be lit
inside the box. In PMODE O the box is drawn and filled
much faster than the PMODE 2 box and the PMODE 2 box

is drawn and filled more rapidly than the PMODE 4 box.
The PMODE 4 box is created much more slowly than the
PMODE O box.

The reason: the computer has four times as many in
dividual dot-lighting assignments to handle in PMODE 4

than in PMODE 0. It simply takes longer to do that work
than in PMODE O where the computer is at liberty to light
four dots at a time, thus completing its task more quickly.

45

Adding Color

Adding Color

Can you believe it? We've managed to get this far in
to the subject of color-computer graphics and only now
we're ready for color. Color, at last! I know you've been

waiting breathlessly so here we go.
Remember how we used RESET, in the text mode, to

light a single point on the video display? SET and RESET
create some really big dots on the screen. The equivalent

illuminator and eraser in the graphics mode are PSET and
PRESET. Since we enjoy medium and higher resolution in

the graphics mode, PSET and PRESET make smaller dots
as you'll see.

Let's go back and more thoroughly explore SET and

RESET. Then we'll move into PSET and PRESET. Here's

the correct format for using SET:

SET X, Y,color

You must tell the computer, each time you use set, the

X,Y location on the 64x32 grid and the color of the dot to

be displayed. Color numbers are zero to eight.

49

Number Color

0 black

1 green

2 yellow

3 blue

4 red

5 buff

6 cyan

7 magenta

8 .__ _ _, orange

The chart above shows each of the nine colors you can
create on the color computer. The colors will vary depen
ding upon the color adjustment of your own television
set. However, you will be able to tell them apart.

Color zero, which we call black, actually is an
absence of color. When you use SET, color zero will leave

a dot's color unchanged.
The BASIC word RESET, as used in the color com

puter, erases a previously-set dot. Here's the proper for
mat for RESET:

RESET X, Y

Note that in RESET you only use the X,Y coordinates. You
don't specify a color since the computer erases a dot by
returning it to the background color which makes it disap

pear.
Now type in this brief demonstration program to see

how SET and RESET work:

10 CLS

20 SET(32, 16,8)

Run this program and you'll find a fat black dot with an
orange corner appears near the middle of the TV screen.

The upper left corner of the black dot is orange.

Color has been removed from the X,Y location you

specified as 32,16. Then color number eight, an orange
color, has been turned on in a smaller spot in the upper
left-hand corner of that dot-with-no-color.

To make the entire character black add lines 30 and
40:

50

30 FOR L = 1 TO 100:NEXT L
40 RESET(32,16)

Now the fat dot ends up all black. As you run the program

lines 10 through 40, line 10 clears the text screen of all
display. Line 20 turns on the black-and-orange dot. Line 30

is a time-delay loop to allow you to see the black-and

orange dot momentarily. Then line 40 turns off the

orange part of the fat black dot.
The black dot remains but without the smaller orange

point in its corner.

To make the orange dot seem to blink on and off, add pro
gram lines 50 and 60:

50 FOR L = 1 TO 100:NEXT L
60 GOTO 20

Now, once the larger black dot is established by line 20, it
stays there. But the orange smaller dot is turned on and
off repeatedly. Line 20 turns on the orange dot and line 40
removes the orange dot. Line 50 is a time-delay so you can

see the no-orange-dot configuration. Line 60 pushes ac
tion back up to line 20 where the orange is turned on
again. You press the BREAK key to stop this continuous
action.

How about making the entire black-and-orange dot
blink on and off? Use the CLS instruction. Change line 40
like this:

40 CLS
Now the computer will alternately display and erase the
entire black-and-orange spot. Line 20 turns it on and line
40 clears the screen, effectively erasing it. Press BREAK
to end the run.

Oh, so small
Let's use the same X,Y values and test the ability of

the computer to set and reset points on the graphics
screen. Remember, for the graphics screen the words to
use are PSET and PRESET.

First, let's clear out our previous program by typing

51

NEW· and pressing ENTER. Now type in the lines
necessary to establish the graphics mode:

10 PMODE 1,1

20 PCLS
30 SCREEN 1,0

Line 10 tells the computer we will be doing some medium
resolution graphics on graphics page number one. Line
20 clears the graphics screen. Line 30 switches the com
puter into graphics-screen display. Add these lines:

40 PSET(32, 16,8)
50 GOTO 50

Run the program. Lines 10 to 30 establish the graphics
screen mode and display. Line 40 causes a point to light
up in orange. Line 50 freezes the action so you can see it.

Where has the dot gone? To the upper left-hand por
tion of the screen. We kept the same X,Y values as in the
text mode, but the text mode grid was only 64x32 while
the graphics mode grid is 256x192. Where there were only
2048 locations to choose from when using SET and
RESET,, now we have 49,152 tiny dots we can light up!

We found the center of the SET/RESET grid to be at
X,Y location 32, 16. The center of the graphics-screen grid
is at 128,96.

The point we have illuminated at position 32,16 is
very, very tiny. It is somewhat hard to see. Let's make it
easier to find by making it blink on and off. Change line 50
and add lines 60 through 80:

50 FOR L = 1 TO 100:NEXT L

60 PRESET(32,16)

70 FOR L=1 TO 100:NEXT L
80 GOTO 40

Run the program. Line 50 is a time delay so you have a
chance to see the point blink on. Then line 60 erases the
point by turning back to the background color. Line 70 is
another time delay, this time so you can see that the spot
has been erased. Line 80 pushes action back up to line 40
where the dot is turned on again.

The entire program will run over and over again until
you press the BREAK key.

Now that we have a blinking dot, let's make it even
smaller by changing from PMODE 1 to PMODE 3. Change
line 10 to this:

52

10 PMODE 3,1

Bet you had thought it couldn't get any smaller! Well,
there it is. Smaller. Now it's really hard to see. Good thing
It's blinking.

Make it even smaller by changing again, this time to
PMODE 4. Change line 10 again:

10 PMODE 4,1

Run the program. Ignore the color changes. Where's the
blinking dot? It's still there but so small you really have to
squint to find it! Imagine, to fill the screen in mode four,
the computer must work on almost 50,000 tiny dots!

Let's get back to the larger dot and reduce eye strain.
And move it to the center of the screen. Change lines 10,
40 and 60:

10 PMODE 1,1

40 PSET(128,96,8)

60 PRESET(128,96)

Now we have a blinking dot we can see at the center of
the screen.

Changing colors
Using the nine color numbers make writing programs

fun! Erase program memory and type in this text-mode
program:

100 FOR C =OTO 8

110 CLS C

120 FOR T=1 TO 200:NEXT T

130 NEXT C

140 GOTO 100

Run the program. You will see the nine colors appear in
number order on the screen.

Line 100 and line 130 form a loop to take the value
stored in memory location C from zero to eight. Line 110
uses the CLS instruction and the value stored in memory
location C to color the blank screen. Line 120 is a time
delay so you can see the displayed color. After the com
puter runs through all eight colors, line 140 pushes action
back to line 100 where everything starts over. You press
the BREAK key to end the run.

Here's the format for the CLS instruction:

CLS color

You add the color number you want, from zero to eight. If

53

you don't use a number, the computer assumes you want
a green screen. It automatically switches into color

number one.
By the way, in text mode, you can only type words on

a green background. You don't have the option of typing

red, for instance, against a blue background. Whenever
you type on the screen or use PRINT or other command

resulting in typing on the screen, the computer puts
those words against a green background.

Now let's try displaying the screen colors in the
graphics mode. First, we'll have to establish the graphics

mode in our program. Type in lines 10 and 20:

10 PMODE 1,1

20 SCREEN 1,0

Line 10 tells the computer to use medium-resolution

writing on graphics page 1. Line 20 switches output to the
graphics display with color set number zero. Color set
zero will give you combinations of green/yellow/blue/red

in PMODE 1.
The colors green, yellow, blue and red are color

numbers one through four. So, change line 100 like this:
100 FOR C =OTO 4

That will make the computer run through the colors
available in color set number zero. Since we are in the

graphics mode we must change CLS in line 110 to PCLS
like this:

110 PCLS C

The rest of the program remains the same. LIST the pro

gram and let's review what we have.
Lines 10 and 20 establish the graphics mode and

screen. Lines 100 and 130 are the zero to four color
numbers loop. Line 110 actually does the clearing of the
screen and the changing of the colors on the screen. Line
120 is a tim't delay so you have a moment to see each

color. Line 140 makes the entire operation repeat endless
ly. You press BREAK to end the run.

The format for PCLS is the same as for CLS. Here it

is:
PCLS color

Again the color numbers are zero to eight but your selec

tion is determined by the color set specified through the
SCREEN instruction. Its format is:

54

SCREEN type, color set

You remember that type choices are zero (text) and one
(graphics). Color set choices also are zero (green/
yellow/blue/red) or one (buff/cyan/magenta/orange).

Suppose you want to look at the other four color
choices for the graphics screen. Those would be buff
(number 5), cyan (6), magenta (7), and orange (8). You need
to change lines 20 and 100 like this:

20 SCREEN 1,1

100 FORC=5TO8

The second number 1 in line 20 selects color set number
one. The color numbers five through eight are used in line
100. Here's a handy chart of the SCREEN color sets:

SCREEN color
set number

0

1

four-color

set
green/yellow/blue/red

buff/cyan/magenta/orange

The higher the resolution, the more memory used by the
computer to do its job. For instance, PMODE O can be
thought of as using only one-page-worth of memory
space. PMODE 1 and PMODE 2 take up memory space
equivalent to two pages.

The difference is in the number of dots per screen

and the number of colors available for those dots. PM ODE
0 is lowest of the graphics resolutions with a relatively

large dot composed of four points on the screen, all lit at
the same time and only in two colors.

PMODE 1, on the other hand, creates a dot with four
points but each dot has four colors available. The more
colors available, the more memory used to do the job.

PMODE 2 forms a medium-sized dot from only two

screen points in two colors. The higher the resolution, the

more memory used.
If you want to save memory space, use a lower

resolution (such as PMODE O or PMODE 1) and use fewer
colors (such as PMODE O or PMODE 2). You can see that

PMODE O uses the least memory.

55

SCREEN
color

PMODE set colors X by Y equlvalent
number number lite pages

0 0 black/greeen 128x96 1

0 1 black/buff 128x96 1

1 0 green/yellow/blue/red 128x96 2

1 1 buff/cyan/magenta/orange 128x96 2

2 0 black/green 128x192 2

2 1 black/buff 128x192 2

3 0 green/yellow/blue/red 128x192 4

3 1 buff/cyan/magenta/orange 128x192 4

4 0 black/green 256x192 4

4 1 black/buff 256x192 4

You can see that PMODE 1 and PMODE 2 use the same

amount of memory space, or pages. PMODE 1 offers four
colors but less resolution. PMODE 2 gives higher resolu
tion but fewer colors.

PMODE 3, on the other hand, offers the resolution of
PMODE 2 but with four colors so it uses even more
memory space. The higher the resolution, or finer the

lines drawn, the more memory required. The more color

used, the more memory used.

Is it on or off?

There is a convenient way to tell if a particular point
on the graphics screen is lit. The PPOINT function can be

used as a test to see what color has been assigned to a

particular dot.

If a color, other than the background color, is found,
the point is lit. If the color is the same as the background,
then you won't be able to see that particular dot (even
though it is there in the background color). Here's the for
mat for PPOINT:

PPOINT (X, Y)

Using the PPOINT instruction, the computer looks at the
point on the screen specified by the X,Y location. Here's a

sample program.

56

10 PMODE 1,1

20 PCLS

30 SCREEN 1,0

100 C = RND(4)

200 PSET(128,96,C)

210 P = PPOINT (128,96)

220 FOR L = 1 TO 500:NEXT L

300 CLS

310 PRINT"RANDOM NUMBER= ";C

320 PRINT"COLOR NUMBER= ";P

This program lights a very small dot at center screen and
tells you the color of that dot.

Lines 10 though 30 establish the graphics mode. We
use PM ODE 1, 1 for a medium-resolution dot you will be
able to see and create it on page 1. We switch on the

graphics screen and use color-set zero with the SCREEN
1,0 instruction.

Line 100 generates a random number from zero to
four and stores that number in location C.

Line 200 prints a dot at X,Y location 128,96 in the
color corresponding to the number stored in C. For in
stance, if line 100 generated a number three, line 200 uses
that number three as a color number and colors the dot
blue. Here are those color numbers again:

Number Color
0 Black

1 Green

2 Yellow

3 Blue

4 Red

5 Buff

6 Cyan

7 Magenta

8 Orange

Line 210 contains our PPOINT test. It looks at screen loca
tion 128,96 and determines the color in use there. If the

random number generated was three and the color of the
dot at 128,96 was blue, the PPOINT test will find blue and
store the number three in memory location P.

Line 220 is a time delay so you can examine the dot
for yourself and see what color you think it is. Then line
300 clears the text screen in preparation for displaying
the test results for you to see.

Line 310 recalls the contents of C, the original ran

dom number used to determine the color in the first
place. It displays that number.

57

Line 320 gets the result of the PPOINT test from
memory location P and displays that number.

The random number and the PPOINT test-result
number will be the same. If the number in C is 3, the
number in P will be 3.

Here's a longer application of the PPOINT test in a
program demonstrating how you can use PPOINT to tell
what color is on a video page without looking.

10 PMODE 1,1
20 PCLS
30 SCREU� l, 0

100 CIRCLE(l28,96),80,4
110 DRAW"C4BM128,96NU80NE55NR80

NF55ND80NG55NL80NH:>5"
200 A=RND(4):B=RND(4)
210 C=RND(4):D=RND(4)
220 E=RND(4):F=RND(4)
230 G=RND(4):H=RND(4)
300 PAINT(l30,89),A,4
310 PAINT(l40,94),B,4
320 PAINT(l40,98),C,4
330 PAINT(l30,101),D,4
340 PAINT(l26,101),E,4
350 PAINT(ll6,98),F,4
360 PAINT(ll6,94),G,4
370 PAINT(l26,89),H,4
400 P=P+PPOINT(l30,89)
410 P=P+PPOINT(l40,94)
420 P=P+PPOINT(l40,98)
430 P=P+PPOINT(l30,101)
440 P=P+PPOINT(l26,101)
450 P=P+PPOINT(ll6,98)
460 P=P+PPOINT(ll6,94)
470 P=P+PPOINT(l26,89)
500 IF P=32 THEN P=0:GOTO 20
510 P=0
520 GOTO 200

This program draws a pie and cuts it into eight
pieces. Each piece is colored separately. The colors ap
pear in an unpredictable order.

58

PPOINT is used to check the color of a dot in each of
the eight slices of the pie. If all eight are red at the same
time, the entire pie is consumed. A new pie is created and
colored.

Lines 10 to 30 establish the graphics mode and
screen. Lines 100 and 110 draw the circle and slice it into
eight sections.

Lines 200 to 230 generate the random numbers used
later (in lines 300 to 370) to select colors for the pie slices.
Lines 300 to 370 PAINT the pie slices.

By the way, we'll get into the BASIC words CIRCLE,
DRAW and PAINT later so don't worry about them for
now.

Lines 400 to 470 look for the specific colors in the pie
slices. As the eight slices are tested, the color numbers
from 1 to 4 are added together. Since red is the highest
number (4), we can use 8x4 = 32 in line 500 to test for the
"all slices are red" condition. The only time the total
stored in memory location P, in line 500, can be 32 is when
all eight pie slices are red.

If the test in line 500 finds all eight pie slices are red,
the value of P is set to zero and program action is kicked
back up to line 20. At line 20, the screen is cleared so a
new pie can be drawn.

If line 500 finds not all pie slices are red, the program
moves on to line 510 where the value of P is set at zero.
Line 520 shoots action to line 200 for a new set of random
numbers and, thus, new pie slice colors.

Text mode POINT

A similar test of screen points is available for your
use when you create low-resolution art in the text mode.
The Color BASIC function POINT has this format:

POINT (X, Y)

The X,Y locations are on the 64x32 grid used in the low
resolution text mode. That is, X can be anywhere from Oto
63 and Y can be from 0 to 31.

If the result of a POINT test of particular screen loca
tion is -1, the cell is in the character mode. That is, it is
displaying a preformed text letter, number or symbol.

If PPOINT finds nothing at that location, it returns a
zero.

59

If a color dot is found, the color number is returned.

Try this simple program if you have non-extended Color

BASIC:
10 CLS

20 PRINT @ 112,"A"

30 P = POINT(32,6)
40 PRINT @ 143,P

50 SET(38,6,8)
60 Q = POINT(38,6)

70 PRINT @ 146,Q

80 R = POINT(44,6)
90 PRINT @ 149,R

The program prints an A, an orange graphics dot, and
nothing at one point. It then prints -1, 8 and zero below
each dot.

Changing background colors
Your Color Computer will allow you to change the

graphics-screen background and foreground colors. Use

the instruction COLOR:

COLOR foreground,background
If you don't use the COLOR to specify foreground and
background colors in the graphics mode, the computer

automatically selects both. It checks which SCREEN

color set you are using and then chooses the highest
numbered color within that set for the foreground and the

lowest numbered color within that set for the

background.
For instance, if you are using SCREEN 1, 1 the com

puter will select from buff (5), cyan (6), magenta (7) and

orange (8). If you are using SCREEN 1,0 it will choose

from green (1), yellow (2), blue (3), red (4).
In other words, if you don't tell it otherwise it will

select orange on buff for SCREEN 1, 1 or red on green for
SCREEN 1,0.

Within the color sets you can change both

foreground and background colors. Try this program:
10 PMODE 1,1
20 COLOR 3,2
30 PCLS
40 SCREEN 1,0

60

50 LINE(20,20)-(50,50),PSET,BF

60 GOTO 60
Lines 10 through 40 establish the graphics mode and
screen, as before, but with one difference. Line 20 has
been added to use the COLOR instruction to change the
foreground and background colors.

In the program above we have selected color 3 (blue)
for the foreground and color 2 (yellow) for the
background. Line 50 draws a color-filled box on the
screen. It is blue box (foreground) against a yellow
graphics screen (background). Now switch those colors
around by changing line 20:

20 COLOR 2,3
Running the program now results in a yellow box

(foreground) against a blue screen (background). Now
change lines 20 and 40:

20 COLOR 8,7
40 SCREEN 1,1

This selects the other color set and chooses colors
orange and magenta. The box will be orange (foreground)
and . the screen will be magenta (background). Now
change line 20 one more time:

20 COLOR 7,8

This switches the color so that the box (foreground) will
be magenta and the screen (background) will be orange.
Now that's what you call vivid!

Border around the screen

You will note that the border around the screen re
mains green throughout this run. In the other color set the
border would be buff. The computer determines the color
set you are using (either SCREEN 1,0 or SCREEN 1, 1) and
selects the lowest color number in that set for the border
color. For SCREEN 1,0 it chooses green (color 1) for the
border and for SCREEN 1, 1 it takes buff (color 5) for the
border.

Just for fun, here's a program to allow the foreground
color to overflow the background color. Let's start in
SCREEN 1,1 with orange and cyan:

10 PMODE 1,1

20 COLOR 8,6

30 PCLS

61

40 SCREEN 1,1

50 FOR Y =OTO 199

60 LINE(0,Y)-(255,Y),PSET,BF

70 NEXT Y

80 GOTO 10

That will run over and over until you press BREAK. Now
change colors by changing lines 20 and 40:

20 COLOR 3,2

40 SCREEN 1,0

Get the idea? You have colors 1, 2, 3 and 4 available in col
or set O and colors 5, 6, 7 and 8 available in color set 1.

62

Circles and
Other Shapes

Circles and Other Shapes

If you've been excited by where we've been so far,
wait'II you see where we are going!

Remember the pie we cut into eight slices using
DRAW, CIRCLE and PAINT? Here's where you find out

how those super BASIC words work.
First, let's look at an even more versatile way to draw

lines on the graphics screen. The instruction is DRAW
and its format is:

DRAW "line string"
Remember, back in the beginning, how tedious it was to
draw a simple line on the screen. You had to PRINT@ or
POKE and, even when we got into the graphics mode, you
were stuck in a straight LINE. Well, here's the way around
those obstacles. This command lets you draw up, down,

right, left, at angles, in different colors, in different sizes,
and even blank lines.

Clear out your program memory by typing in NEW

and ENTER. Set up the graphics mode with these pro
gram lines:

65

10 PMODE 1,1

20 PCLS

30 SCREEN 1,0

Now we'll add lines to compare the LINE drawing instruc

tion you already know with the new DRAW statement:

40 LINE(80,110)-(180,110),PSET
50 DRAW"C3BM80,90R100"

60 GOTO 60

Line 40 uses LINE to create a straight line from X,Y posi

tion 80,110 to position 180,110. Line 50 uses DRAW to

make a straight line at X,Y position 80,90 and moving

right 100 points.

The LINE line is red and the DRAW line is blue.
Let's take a closer look at line 50:

50 DRAW"C3BM80,90R100"

Remember that the DRAW instruction must have, attach
ed to it, a string of specifications enclosed in quotation

marks.

Between the quotes in our line 50 we find, first, a C3.
C stands for color. C3 means we want the drawing to be in
blue which is color number 3.

Next we find the letters BM. M is the command to
start drawing. As a standard procedure, you must always

place a B before this M or else you might get unwanted

lines on your drawing. So, in effect, BM means "get go
ing!"

But from where? Where do we start drawing? The

answer is at X,Y position 80,90. Notice in line 50 that we

specified position 80,90 immediately after the letters BM.

You must remember to include the comma in the X,Y posi
tion at all times so the computer will recognize it as an

X,Y location.
So we start at position 80,90. The next part of the

string reads R100. This means, having started drawing at
position 80,90, draw a line to the right for a distance of 100

screen points. R means draw toward the right and the

number 100 indicates how far to go, how many screen

points.
There are eight letters, including R, which let you

move in any of the directions we think of as being com

pass points. Imagine moving north, northeast, east,
southeast, south, southwest, west, or northwest.

66

NORTHWEST

H

WEST L

G

SOUTHWEST

NORTH

u

D

SOUTH

NORTHEAST

E

R EAST

F

SOUTHEAST

U stands for up, or draw a line in an upward direction. A
means draw toward the right. D stands for draw downward

and L means draw toward the left.
E tells the computer to draw toward the northeast.

That is, upward and toward the right by equal amounts, at
a 45 degree angle from north. F says draw down and to the
right, southeastward, at an angle of 135 degrees from

north.
G means draw down and to the left, southwestward,

at an angle of 225 degrees from north. And H stands for
draw upward and to the left, northwestward, at an angle of

315 degrees from north.
Here's a list of the various letter abbreviations as us

ed within the DRAW string:
letter instruction

M start moving position

B move but draw blank

u draw upward (north)

E draw up and right (northeast)

R draw rightward (east)

F draw down and right (southeast)

D draw downward (south)

G draw down and left (southwest)

L draw leftward (west)

H draw up and left (northwest)

N no position update

C color choice

A angle

s scale

X execute substring and return

67

Suppose you wanted to draw a line 50 points long to
the left from the center of the screen. How would you set
up a DRAW instruction?

D RA W"C4BM 128,96L50"

This statement would cause the computer to draw a red
line from the center of the screen toward the left for a
distance of 50 points.

C4 calls for color number 4. BM tells the computer to
get started with the drawing. 128,96 is the start point. And
L50 means draw toward the left for 50 points.

Now let's practice by changing the color in line 50 in
our program:

50 DRAW"C2BM80,90R100"

The line will appear yellow. C2 tells the computer to draw
using color number 2 which is yellow. Let's set a small
box on the end of our line.

50 DRAW"C2BM80,90R100U50L50D50"

The yellow line goes 100 points to the right, then upward
for 50 points, then to the left for 50 points, the, down for
50 points. The result is a box on the line.

As you can see, you can take the line anywhere on the
graphics screen. You can even use the line to make pic
tures or draw symbols which have meaning. Here's a long
DRAW statement which actually creates the letters ABC
in the middle of the screen:

50 DRAW"C2BM80,90U20R10D10L 10 R10D10

BR20U20R10D10L8R8D10L10

BR40L 10U20R10"

Try it. You'll find a yellow line starting at X,Y position
80,90 moving upward 20 points, right 10 points, down 10
points, left 10, right 10 and down 10. That creates a letter
A.

As the draw continues, it encounters BR20. That

68

means move right 20 points but don't draw anything.
That's how we get to the start position on the letter B
without drawing a line connecting the A and B.

To draw the B, we go up 20 , . right 10, down 10,
left 8, right 8, down 10, and left 10. Then there's another
BR, this time drawing the invisible or blank line for 40
spaces toward the right.

The C is composed by drawing left 10, up 20, and
right 10.

No update
As you look at line 50, you'll see that the computer

moves up 20 and then, from that point, moves right 10.
And then from that point it moves down 10. And then from
there left 10. Etc. The computer updates itself, after each
short draw, so it can start the new piece of the drawing
from wherever it left off.

You can cause the computer to not update by using
the letter N before the direction letter.

Suppose you want to simulate the eight-pointed
compass rose with eight lines radiating from the center of
the compass. You could move the DRAW position out and
back each arm of the compass like this:

ORA W"C2BM 128,96U75O75E75G75R75L 75

F75H75O75U75G75E75

L 75R75H 75F75"

Or we could shorten that by using the no-update letter, N,
and have eight instead of 16 partial-lines to draw:

DRAW"C2BM128,96NU75NE75NR75NF75

N O75N G 75N L 75N H 75"

You can see that using N for no update saves plenty of
program-memory space here. Type in and run the whole
program:

10

20

30

40

50

PMODE 1,1

PCLS

SCREEN 1,0

DRAW"C2BM128,96N U75N E75NR75N F75

ND75NG75NL75NH75"
GOTO 50

It draws eight lines, each from the center of the screen.
Now use the NEW command to erase that program from
memory and let's try + X and + Y.

69

Relative motion

No, not your mother-in-law chasing you. Relative mo
tion means moving the draw position relative to where
you last used it.

For instance, suppose you want to draw two boxes
on the screen. You know where you want the first one
located but the second one must be located relative to
the position of the first box. You could spend a lot of time
computing the exact X,Y locations for each box. Or you
could use the computer's ability to locate relative posi
tions.

When we use relative positions, we use points which
are located in relation to the last points we used. For ex
ample, if you have a point at position 128,96 and you want
another point at 120,90 you can see that both the X posi
tion and the Y position have changed relative to the first
point. The X change is -8 and the Y change is -6.

Having made that change you now are at point
120,90. You want to change again, this time to 145,101.
The change in the X direction is + 25 and the change in
the Y direction is + 11.

Suppose we use the DRAW command to draw a
yellow box like this:

DRA W"C2BM 128,96R25U25L25D25"

This will draw a box starting at point 128,96. The box will
be a square with each side 25 points long.

Next you need a box of the same dimensions starting
· at the upper right-hand corner of the first box. Rather than

spend a lot of time calculating the start point of the se
cond box, use the computer's ability to spot a position
relative to its last position. Use + X or -X and + Y or -Y. In
this example, use X + 25 and Y-25. Write that into a DRAW
statement like this:

DRAW"C2BM + 25,-25R25U25L25D25"

When you ended the first box, your position was back at
128,96. So, in starting the second box, the computer mov
ed X from 128 to a position 25 points in the postive(+)
direction. It moved Y 25 points in the negative (·)
direction. Then it started drawing the next box. Here's
a program you can run:

70

10 PMODE 1,1

20 PCLS

30 SCREEN 1,0

40 ORA W"C2B M 128,96R25U25L25D 25"

50 FOR L = 1 TO 300:NEXT L

60 DRAW"C2BM + 25,-25R25U25L25D25"

70 GOTO 70

Lines 10 to 30 establish the graphics mode. Line 40 starts
at X,Y position 128,96 and draws a yellow square with 25
points on each side.

Line 50 is a momentary time delay so you can see the
first box briefly.

Line 60 then draws a second box. The start position
for this draw is determined by the + 25,-25 in the X,Y
places in the string. You must remember to use the com
ma there as we have done.

cP
The X must have either a plus (+)sign or a minus(-)

sign. Y should have a minus(-) sign or a plus (+)sign. In
the case of + Y only you have the option of omitting the
plus (+)sign.

Let's add some more yellow boxes to the display.
Change line 70 and add lines 80 and 90:

70 FOR L = 1 TO 300:NEXT L

80 DRAW"C2BM-25,-25R25U25L25D25"

90 GOTO 90

Now the program draws a third box using the posi

tion -25,-25 relative to where the second box has ended.

I

71

Can you figure out how to draw a fourth box to complete a

cross shape? Change line 90 and add lines 100 and 110:

90 FOR L = 1 TO 300:NEXT L

100 DRAW"C2BM-25, + 25R25U25L25D25"

110 GOTO 110

The program draws the fourth box, creating an in

teresting overall shape on the screen. Note that lines 50,
70 and 90 are time delays so you can see one box being
created at a time.

To review the entire program, as modified, lines 10 to 30
establish the graphics mode. Line 40 draws the first box.
Line 60 draws the second box. Line 80 draws the third and

line 100 draws the fourth box. Now let's put some color in
the boxes.

PAINT

You know how to color the lines created by the
DRAW instruction. But how can we get a big splash of col

or to fill an entire box on the screen? Use PAINT which
has this format:

PAINT (X, Y),color, border

The X,Y location specified inside the parentheses in
dicates where the PAINTing is to start. Color is where you
put the number of the color you want to use to fill the box

or circle or area. Be sure to use a color number which is in
the particular SCREEN color-set you are using.

Border means the color number of the border you

wish to PAINT to and stop. Suppose you are using
SCREEN color set zero. You are in PMODE 1 which per
mits use of four colors on the display. The colors
available to you are green/yellow/blue/red. The

background color is green. You have just drawn a yellow
square on that green background. Now you wish to fill in

72

that square with a solid blue color.
The color number you want to PAINT is 3 (blue) and,

you want to start at a point inside the square and PAINT in
each direction until you hit the yellow (color number 2)
line or border. You might have this instruction:

PAINT (130,94),3,2

Starting at X,Y location 130,94 the computer would PAINT
blue until it reached a yellow border or until it reached the
edge of the graphics screen.

Remember the four boxes we drew with the last pro
gram. Let's add some color to those boxes. Change line
110 and add lines 120 through 190.

110 PAINT(130,94),3,2

120 FOR L =1 TO 300:NEXT L

130 PAINT(155,69),3,2

140 FOR L =1 TO 300:NEXT L

150 PAINT(130,44),3,2

160 FOR L = 1 TO 300:NEXT L

170 PAINT(105,69),3,2

180 FOR L=1 TO 300:NEXT L

190 GOTO 10

fhe program, from line 10 through 190, will DRAW the four
yollow boxes as before. Then it will color each box with
l>lue. There is a time delay so you can see each box for a
moment after it is colored, before the next box is colored.
I he time delay loops are lines 120, 140, 160 and 180.

BY the way, if the computer is PAINTing toward a border
color you have chosen but reaches some other color first,
it will PAINT over the unwanted color as it moves on in
search of the border you told it to go to.

Be sure to select colors which fit the PMODE number
you have selected and the SCREEN color set you are
using.

73

Angles and scale
A stands for angle and it has this format:

A number
The number must be either 0, 1, 2, or 3. A allows you to
specify an angle at which a line is to be drawn. If you don't
specify the angle, the computer assumes you want AH.

Number
0
1

Degrees
0
90

2 180

3 270

The degrees of rotation are in a clockwise direction. If you
use an A-number instruction in a DRAW statement, all
subsequent lines will be drawn at the same angle or rota
tion.

The angle specification goes before the BM start
moving instruction. We'll build a program to draw an ar
row on the screen and rotate it so it points in different
directions:

10 PMODE 1,1
20 PCLS
30 SCREEN 1,0
40 DRAW"C2A0BM128,96U50NF10NG10"
50 GOTO 50

The arrow extends upward 50 points from the center of
the screen. The AO information imbedded in the DRAW
string told the computer to rotate the arrow zero degrees
from straight up. In other words, in this case, don't rotate
it at all.

i
Let's add another DRAW statement, this time with an A 1
angle to rotate the arrow 90 degrees. Change line 50 and
add lines 60 and 70:

74

50 FOR L = 1 TO 300:NEXT L
60 DRAW"C2A1BM128,96U50NF10NG10"
70 GOTO 70

The first arrow still points up from the center of the
screen but now there is a second arrow pointing toward
the right from the center of the screen. In effect, the se
cond arrow is rotated 90 degrees from the vertical.

Obviously, we can add arrows so we have them pointing
In four directions, north/east/west/south. Change line 70
and add lines 80 through 110:

70 FOR L = 1 TO 300:NEXT L

80 DRAW"C2A2BM128,96U50NF10NG10"

90 FOR L = 1 TO 300:NEXT L

100 DRAW"C2A3BM128,96U50NF10NG10"

110 GOTO 110

Now the program works like this: lines 10 through 30
establish the graphics mode. Line 40 DRAWs a vertical ar
row, pointing upward. Line 60 creates the rightward
pointing arrow. Line 80 makes the downward-pointing ar
row and line 100 DRAWs the leftward-pointing arrow.

Lines 50, 70 and 90 are time delays so you can see
the arrows progress around the "clock."

A spinning arrow comes to mind! Erase lines 40 to 110 of
the old program and type in these new lines 100 to 230.

75

10 PMODE 1,1

20 PCLS

30 SCREEN 1,0

100 FOR A=0 TO 3

110 A$= STR$(A)

120 GOSUB 200

130 NEXT A

140 GOTO 100

200 DRAW"C2A" +A$+ "BM128,96US0NF10NG10"

210 FOR L = 1 TO 200:NEXT L

220 PCLS

230 RETURN

Rather than writing the DRAW strings over and over, we
put the DRAW instruction in a subroutine starting at line
200.

Lines 10 to 30 establish the graphics mode. Lines 100
and 130 create a loop to take the value of A from zero
through three. Line 110 converts the current numerical
value of A to a string and stores it in A$.

Line 120 forces the computer to jump to the subroutine
at line 200.

Pay careful attention to the way we insert the A value
into the DRAW statement in line 200. We use the com
puter's ability to add strings together to create longer
strings.

200 DRAW"C2A" +A$+ "BM128,96USONF10NG10"

We actually add three strings together to create the final

DRAW string. The first is the obvious "C2A" and the third
is "BM128,96U50NF10NG10". The second, or middle,
string in the group is A$.

Remember that the value of A$ changes with the
FOR/NEXT loop in lines 100 to 130. Whatever the current
value is for A$, it is inserted into the DRAW string at line
200 to tell the computer what angle number to use.

You could use the same trick to change colors, start
locations, scale or other important information in the
DRAW string.

Speaking of scale, here's the format for changing
size of your drawings:

S number
The S-number can range from 1 to 62, indicating the

relative scale of size of your drawings in quarter units.

76

The S-number can range from 1 to 62, indicating the
relative scale of size of your drawings in quarter units.

S number scale

1

2

3

4

5

6

etc.

1/4 scale

2/4 scale

3/4 scale

4/4 scale

5/4 scale

6/4 scale

The 2/4 scale is the same as 1/2 scale. The 4/4 scale is full

scale or one-to-one scale. The 5/4 scale is the same as
125% of the original. The 8/4 scale is double size. The 12/4
scale is triple size. And so on.

If you don't use an S-number, the computer assumes
4/4 scale or full size. After you use a scale change instruc

tion, all drawings will remain in the increased or decreas
ed size until you issue another S-number.

Here's a short program to draw a box in 4/4 (full size)
scale and then repeat it in half size (2/4 scale) and double

size (8/4 scale):
10 PMODE 1,1

20 PCLS

30 SCREEN 1,0

100 DRAW"C2S2BM 128,48R20U20L20D20"

110 DRAW"C3S4BM128,96R20U20L20D20"

120 DRAW"C4S8BM128,144R20U20L20D20"

200 GOTO 200

The program creates three boxes on the video screen. A
small box is on top; a medium box is in the middle; a large

box in on the bottom.

□

□
77

The small box is yellow. The medium box is blue. The
large box is red.

All the boxes have the same dimensions on their
sides. Each is drawn as R20U20L20D20. But, the yellow
box is half-size 2/4 scale. Note the S2 information imbedd
ed in line 100 which draws the yellow box.

The blue box is in full-size 4/4 scale. The specifica
tion S4 can be found in the DRAW string in line 110.

The red box is double size (8/4 scale). The S8 scale
direction is in line 120.

Here's a variation on the same program which you
might like. Change lines 100 through 120:

100 DRAW"C2S2BM128,96R20U20L20D20"

110 DRAW"C3S4BM128,96R20U20L20D20"

120 D RA W"C4S8B M 128,96R20U20L20D20"

The program still draws three boxes but now each has the
same origin. That is, the lower left-hand corner of each
box is at the same point onthe screen. You can see how
the sizes differ even though each still is described as R20
U20 L20 D20.

The yellow box is smallest. The blue box is medium
sized. The red box is largest.

By the way, have you gotten the hang of making things
disappear? Draw a line in any color other than the
background and it will appear. Draw the same line over
top of it in the background color and it will disappear.
Here's a quick sample:

78

10 PMODE 1,1

20 PCLS

30 SCREEN 1,0

40 DRAW"C2BM128,96R50NH10NG10"

50 FOR L = 1 TO 300:NEXT L

60 DRAW"C1BM128,96R50NH10NG10"

70 FOR L = 1 TO 300:NEXT L

80 GOTO 40

A run results in an arrow which points rightward from the
center of the screen. The arrow appears and disappears'
and appears and so on. It seems to blink on and off. Lines
10 to 30 establish the graphics mode and screen. Line 40
draws the arrow in yellow. Line 50 is a time delay so you
can look at the arrow for a moment.

Line 60 draws the same size and shape arrow in the
same place on the screen, but in green, the background
color. It disappears into the rest of the green background.

Line 70 is a time delay so you can see the invisible ar•
row and line 80 pushes back to line 40 where the yellow
arrow is drawn again. The blinking arrow continues until
you press the BREAK key.

Around in CIRCLES

So far we've used straight lines, sometimes bent into
angles, to create shapes on the display. There is a com
mand which will draw a circle for you.

CIRCLE (X, Y),radius, color, heighthlwidth, start, end
The center of the circle is set at a particular X,Y location
on the face of the screen. To draw a circle on the face of
the screen, you must at least locate the centerpoint and
specify the radius.

Color, height-to-width ratio, start point and endpoint
for partial circles all are optional.

10 PMODE 1,1

20 PCLS

30 SCREEN 1,0

40 CIRCLE (128,96),50

50 GOTO 50
Lines 10 to 30 establish the graphics mode. Line 40 draws
a circle with center point at X,Y position 128,96. The circle
has a radius equal to 50 points on the face of the graphics
screen. The diameter of the circle is 100 points.

The color of the circle is red. Here's how to change
that to yellow. Change line 40:

40 CIRCLE (128,96),50,2

Now the circle comes out drawn in a yellow line. To
change it into a tall oval, change line 40 again:

40 CIRCLE (128,96),52,2,2

To draw only half of the circle, change line 40 again:
40 CIRCLE (128,96),50,2,1,.25,.75

79

The possible start point and end point of a semicircle is in
the range of zero to one. Here we selected .25 for the start
point and .75 for the end point.

Remember that the start point and end point for a full
circle is at the 3:00 position. So, when you specify a start
at .25 that would be one quarter turn later or 6:00. When

you specify an end point at .75 that would be three
quarters turn or 12:00.

Be sure to use the heighth-width ratio when drawing an
arc. For a partial circle, use an heighth-width ratio of 1.

About that heighth-width ratio: if it is greater than 1,
the circle will be taller than it is wide. If it is less than 1,
the circle will be wider than it is tall. If it is 1, you will get a
true circle.

If the heighth-width ratio equals zero, the circle

becomes a horizontal line. On the other hand, the greater
the number becomes above 1, the more the circle ap
proaches a vertical line. Try this program:

10 PMODE 1,1

20 PCLS

30 SCREEN 1,0

40 CIRCLE (128,96),100,2,.4
50 GOTO 50

The program, at line 40, draws a circle with centerpoint at
128,96. The yellow circle has a radius of 100 points and is
squashed. The .4 in line 40 gives it a heighth-width ratio of
4/10. It's 2 1/2 times as wide as it is tall. Sort of like a foot
ball or a halo.

Let's switch that to an oval that is taller than it is
wide. Change line 40:

40 CIRCLE (128,96),15,2,5

Now the circle becomes very tall and narrow. You could
make it so tall and narrow it would become a vertical line
with this change to line 40:

80

40 CIRCLE (128,96),2,2,255

Or you could make it so short it would become a horizon
tal line with this change to line 40:

40 CIRCLE (128,96),15,2,0

If you want normal-shape, full circles you may omit the
helghth-width ratio and the start point/end point numbers.
Also, if you are satisfied with the current foreground col
or, you may eliminate the color number.

But, you must always have the X,Y center point and
the radius. The largest radius which will fit on the screen
Is 95 and that requires the circle to have a center point at
128,96. Larger radii will cause part of the circle to flatten
out against the edge of the graphics screen.

Ragged circles
Have you been a bit less than happy with the rough

edges on the circles we have drawn so far? It's because
we are in a medium resolution mode. Try this circle in the
highest resolution, PMODE 4:

10 PMODE 4,1

20 PCLS

30 SCREEN 1,0

40 CIRCLE (128,96),50

50 GOTO 50

Now you see what the difference is! The points used to
create the circle are much smaller in PMODE 4. The circle
looks far less ragged and much more like a "real" circle.
For further comparison of the resolutions, make this
change to line 10:

10 PMODE 0,1

The difference between the higher and lower graphics
resolutions is very noticeable.

Now for some fun. Let's leave the subject of circles
with this easy piece of graphic artistry:

10 PMODE 1,1

20 PCLS

30 SCREEN 1,0

40 FOR X = 25 TO 230 STEP 5

50 CIRCLE (X,96),25,2

60 NEXT X

70 GOTO 70

81

A neat art design of circles across the center of the
screen. Can you figure out how to fill the screen with the

same sort of pattern?

82

Making· Things Move

Making Things Move

Movement on the computer display screen is an illu
sion. As in any television picture, the turning on and turn
Ing off of dots in a pattern across a screen can seem to

provide motion to an object drawn on the face of the tube.
There are a number of ways to get the look of motion.

Let's send a dot across the screen:
10 PMODE 1,1
20 PCLS
30 SCREEN 1,0
40 FOR X =OTO 255
50 PSET (X,96)
60 PRESET (X,96)
70 NEXT X

80 GOTO 80
We use PSET and PRESET to turn on and off points in a
llne across the screen. It looks like a dot is moving. We

can do the same with the LINE instruction. Change lines
40, 50 and 60:

85

40 FOR X =OTO 253

50 LI NE(X,96)-(X +2,98),PSET,BF

60 LINE(X,96)-(X + 2,98),PRESET,BF

Again, a dot seems to move rightward across the scre�n.
Let's try it with a CIRCLE. Change lines 50 and 60:

50 CIRCLE (X,96),5,2

60 CIRCLE (X,96),5,1

In each of these cases we start at the left edge of the
graphics screen and create a dot. We then make that dot
disappear by coloring it the same as the background.
Then we light a new dot or circle and then turn it off by
making it the same color as the background. The result is
the apparent movement of the dot or circle rightward
across the screen.

Give 'er some gas!
You will notice how slowly the dots move across the

screen. The process of turning on and turning off and so
on takes a lot of time. The computer, after all, only works"
on one instruction at a time. Even at the high speeds with
which events happen inside the computer, it still seems
slow in moving that dot across the screen. Here's how to
speed things up considerably.

The GET and PUT instructions allow you to grab a
picture from one place on the screen and take it directly
to another spot on the display. This rapid changing of
places is followed by the eye and seen as movement bet
ween the two places, even though the object on the
screen only appeared in two places: the place where you
GET the art and the place where you PUT it. Here's an ex
ample:

86

10 PMODE 3,1

20 PCLS

30 SCREEN 1,0

40 DIM X(7,9)

50 DRAW "8M113, 191R15 E5F5R15H10U30H10

NU5GI0D30G10"

60 PAINT(128,146),3,4

70 GET(113,135)-(153,191),X

80 PCLS

90 PUT (113,0)-(153,56),X

100 GOTO 100

A blue rocket ship with a red outline flies against a green
background! It literally hops from bottom of screen to·
top. How does it work?

Lines 10 to 30 establish the graphics mode and
screen. Note we went to PMODE 3 higher resolution, finer
detail.

Line 40 sets up an array labeled X. That array will hold
the picture of the rocket ship when the time comes for it
to leap upward.

Line 50 draws the ship at the foot of the screen. It
starts life as a red outline. Then like 60 PAINTs blue in
side the red outline. Now we have a red and blue rocket
ship sitting at the bottom of the screen.

The GET instruction in line 70 picks up the entire
screen rectangle from X,Y location 113,135 to location
153,191 and stores the picture in that rectangle in the ar
ray labeled X which we set up back at line 40.

Position 113,135 is the upper left corner of the rec
tangle. Position 153,191 is the lower right corner of the
screen rectangle. The rectangle, defined by the upper left
and.lower right corners, holds all of the picture which we
want to move. We take the display from that rectangle and
store it in memory, in a special array.

Having used GET to store away the display informa
tion in an array, we erase the display. The PCLS in line 80

clears the graphics screen. At this point the screen is
blank but our original rocket ship is stored in memory in
an array labeled X.

Now we accomplish the illusion of motion.
The PUT statement in line 90 recalls the display data

from memory array X and places it in a same-size rec
tangle on the graphics screen, but in a different location
from where it got that data.

The computer can GET a part of its display from one
eet of screen locations (first rectangle) and PUT that part
of the display at some other location on the graphics
screen.

The format for the GET statement is:

GET (startpoint)-(endpoint),array,G

Startpoint is the X,Y coordinates of the upper left corner
of the part of the display to be stored in memory. End-

87

point is the lower right corner of that part of the display to
be stored in memory.

Any part of the graphics display may be visualized as
being in this rectangle but the larger the area to be picked
up, the more memory required to hold it. So, the size of
your rectangle is limited by how much memory you can af
ford to spend on it. Each element in the storage array
takes five memory locations or bytes of memory. For in
stance, a 16K color computer is limited to arrays with
fewer than a total of 1400 elements. (Width multiplied
times length gives the total.)

The array is a group of memory locations you set up
to receive the data from the rectangle on the screen. GET
has to have a destination when it picks up the information
and this array is that destination. GET takes the informa
tion and stores it in memory in this array.

The array is a two-dimensional array. The size of that
array corresponds to the size of the screen rectangle
which needs to be stored. The first array size is the width
of the rectangle. The second array size is the heighth on
the screen of the rectangle. For example, a 10 by 20 rec
tangle would fit in a 10 by 20 array.

Remember that in the Color Computer, array sizes
start counting at zero. So a 10 by 20 array could be dimen
sioned as:

DIM X(9,19)

Such a 10 by 20 array would have a total of 200 elements.
The total number of elements is rectangle width
multiplied by rectangle heighth.

A 30 by 40 array might be dimensioned as DIM
X(29,39) and would have a total of 1200 picture elements.
The width of the screen rectangle to be stored (in this
case, 30) is the first dimension in the array. The heighth of
the rectangle on the screen (in this case, 40) is the second
dimension in the array.

Here's the PUT statement format:
PUT(startpoint)-(endpoint), array, action

This startpoint and endpoint define a same-size rectangle
on the screen where you plan to PUT the display data
stored in the memory array.

The startpoint is the upper left corner of a rectangle.
The endpoint is the lower right corner of that rectangle.

88

This rectangle must be the same size, in width and
heighth, as the original rectangle obtained by the GET In
struction.

Naturally, the array is the set of memory locations
previously used by GET to store the picture away. This ar
ray is the source of information for PUT just as it was the
destination for GET.

Action is an optional part of the instruction. If you
use action with PUT you must use the letter G with GET.
The G goes at the end of the GET statement and the ac
tion instruction goes at the end of the PUT statement. Ac
tion, when used, tells the computer how to create the new
display rectangle. The choices for action words are PSET,
PRESET, AND, OR and NOT. Here's what they do:

Word Function
PSET Turns on same points as In the original rectangle.
PRESET Turns off the points that were on In the original rec

tangle.
AND Compares points In both old and new rectangles. If

points are on In both, the screen point will be turned
on. If not, turned off.

OR Compares points. If either rectangle Is on, screen re
mains on.

NOT Reverses the on/off state of each point In the new rec-
tangle regardless of the PUT array's contents.

It Is important that you remember to use both GET and
PUT in the same PMODE. And, of course, the rectangle
you choose and the screen position you plan for it both
must be large enough to hold all of the parts of the picture
you want to move. If not, part of your picture will be
lost.

If you tack the G on the end of the GET statement,
you must use one of the action words on the end of the
PUT statement. However, there is no need �to use G and
the action options in PMODE 0, PMODE 1 or PMODE 3.
You should use them in PMODE 2 and PMODE 4.

Smooth flight
In our rocket ship program, we had it hop from one

location to another. It was first drawn on the bottom of
the screen. We used GET and then PUT to move it from
the bottom to the top of the screen. Now let's give it a
more smooth flight:

89

10 PMODE 3,1

20 PCLS
30 SCREEN 1,0

40 DIM X(7,9):DIM Z(7,9)
50 DRAW"BM113, 191 R1 SES F5R15H10U30H10

NU5G10D30G10"

60 PAINT(128,146),3,4

70 G ET(113, 135)-(153, 191),X
80 FOR Y = 134 TOO STEP -1

90 PUT(113, Y)-(153, Y + 56),X

100 PUT(113, Y + 57)-(153, Y + 112),Z
110 NEXT Y

120 GOTO 120
In this program we PUT a series of rocket ships up the
screen, erasing each old ship when a new one is created.
The flow of rocket ships up the screen creates the illusion
of smooth flight.

Lines 10 to 30 establish the graphics mode and turn
on the graphics screen. We use PMODE 3 for better
resolution.

At line 40, we dimension two arrays. The first array,
labeled X, will be used to store the actual picture of the
rocket ship. The second array, labeled Z, will have nothing
placed in it. All of its memory locations will remain empty,
or set to zero. We will need that empty array later, at line
100, to erase old rocket ships after new ones are drawn.

Line 50 draws our rocket ship at the bottom of the
screen with a red outline. Line 60 colors the rocket ship
blue inside the red outline.

Line 70 GETs the image of the rocket ship and
background from a rectangle which has its upper left cor
ner at X,Y position 113,135 and its lower right corner at
position 153,191. The colors of all the dots in that rec
tangle are stored in memory in array X.

Lines 80 and 110 compose a FOR/NEXT loop to take
the value of Y from 134 to zero (step -1). Each pass through
the loop reduces Y by 1. That Y value is used to establish
the down-to-up location of the rocket ship when it is
printed on the screen by the PUT command in line 90.

Line 90 goes to array X and pulls out the information
stored there concerning the color of all the dots in the
rectangle being moved. It takes that information and uses

90

It to recreate the image of the rocket ship and Its
background in a new rectangle at a new screen location.

Line 100 is very important because it, in effect,
orases an old rocket ship at a lower elevation when a new
ship is drawn at a higher elevation above the bottom edge
of the graphics screen.

Line 100 is a PUT instruction. It looks in the array we
labeled Z. Finding nothing there, when it recreates its rec
tangle, nothing is printed. Only the background color re
mains. We position this rectangle so it always is im
mediately below the rectangle holding the picture of the
rocket ship. Thus, you have two rectangles moving up the
screen. One with a rocket ship drawing. One with nothing.
The nothing covers or replaces the older, lower rocket
ship, effectively erasing it.

If you leave out line 100, you get a solid color bar

from the bottom of the rocket ship back down to the bot
tom edge of the graphics screen.

line 120 is an action freezer.

Putting it all together

At this point, if you've been following the sequence of
explanation through this book, you're ready for something
really big!

Here's a program which will outdo any old video game
graphics. This is not a game but an example of how to put
together a great deal of the graphics knowledge you now
have to create something to zonk the neighborhood kids.
Even your family will think this one's cute.

We'll build on the blue rocket ship you already know
about. However, to save confusion, better clear out all of
your program memory by typing in NEW and pressing the
ENTER key. Here's the program:

Ghost Martian
In Flying Saucer

Shoots Down Rocket Ship

10 PMODE 3,1

20 PCLS

30 SCREEN 1,0

91

100 DIM X(7,9):DIM 2(7,9)

200 DRAW"BM113, 191 R15E5F5R15H10U30H I0NUS

G10D30G10"

210 PAINT(128,146),3,4

300 DRAW"C2BM20, 175R1 0USL 1 0U5R1 0"

310 SOUND 225,1

320 FOR L = 1 TO 100:NEXT L

330 DRAW"C1BM20,175R10U5L 10U5R10"
340 DRAW"C2BM20,175BR10U10D5L5U5"

350 SOUND 225,1

360 FOR L=1 TO 100:NEXT L
370 DRAW"C1 BM20,175BR10U10D5L5U5"

380 DRAW"C2BM20,175R10U5L5R5U5L 10"
390 SOUND 225,1

400 FOR L = 1 TO 100:NEXT L

410 DRAW"C1BM20,175R10U5L5R5U5L 10"

420 DRAW"C2BM20,175R10L 10U5R10U5L 10"

430 SOUND 225, 1
440 FOR L=1 TO 100:NEXT L

450 DRAW"C1 BM20, 175R10L 10U5R10U5L 10"
460 DRAW"C2BM20,175BR5U10"

470 SOUND 225,1

480 FOR L = 1 TO 100:NEXT L

490 DRAW"C1BM20,175BR5U10"

500 G ET(113, 135)-(153, 191),X

510 FOR Y = 134 TOO STEP -1

520 PUT(113, Y)-(153, Y + 56),X

530 PLAY"L255C"

540 PUT(113, Y + 57)-(153, Y + 112),Z
550 NEXT Y
600 CIRCLE(40,50),20,2, 1,.6,.95
610 SOUND 250,1

620 CIRCLE(40,50),40,2,.2

700 FOR L=0 TO 9

710 LINE (L +60,50)-(L +61,48),PSET,BF
720 NEXT L

730 DRAW''C3BM70,49N USN ESN RSN FSN D5R10
BR5R10BR5R10"

740 PLAY "L 10C"
750 DRAW"C2BM116,49NH5NL5NG5"

760 FOR L = 1 TO 50:NEXT L

800 PCLS

92

810 PLAY "L 100F"
820 DRAW"C4BM153, 56 D15F5G5D15E1 0R30E10

NR5H10L30H10"

830 PCLS
840 PLAY "L100E"
850 DRAW"C4BM150, 120D15F5G5D15E10R30E10

NR5H10L30H10"
860 PCLS
870 PLAY "L 100D"
900 LIN E (0, 191)-(255, 191),PSET
910 DRAW"C4 BM150, 191H 5U15F1OE15D20R5U20

F35E9F5E5"
920 PAINT(151,19 0),3,4
930 DRAW"C2BM 135,191 N E2N USN H 5BR1 00N H2

NU5N E5"

940 PLAY "L 1 C"
1000 IF INKEY$ =""TH EN 1000 ELSE CL EAR:GOTO 10

Type in the program and run it. At the end of action
and sound, the computer will hold the last image on the
screen and await instructions to start over. You press any
key on the keyboard and the action will start over from the
beginning. Here's how it works:

We've divided the program lines into 10 blocks so
you can more readily analyze the structure. The lines from
10 to 30 establish the graphics mode and turn on the
graphics screen. We choose PMODE 3 and the
green/yellow/blue/red color set.

Line 100 sets up two memory arrays. The array labeled
X will hold dot color information from the rectangle con
taining the rocket ship. The Z array will hold nothing and
is used to erase the rocket ship from the screen as it flies
upward.

Lines 200 and 210 create the rocket ship at the bot
tom of the screen. Line 200 draws it in red outline and line
210 fills it in with blue color.

What good is a rocket ship without a countdown to
launch? Lines 300 to 490 make the countdown. We do that
by drawing on the graphics screen the numbers 5, 4, 3, 2
and 1 in sequence with an appropriate beep after each
number appears.

Line 300 draws a yellow number 5. Line 310 beeps.
Line 320 holds the 5 on the screen for a moment so you

93

can see it. Then line 330 erases the number by drawing
the same 5 in the same location in green. The green 5
can't be seen, since green is the overall background col-
or, so the number disappears.

The cycle is repeated as we draw a 4 at the same
screen location. Line 340 draws a yellow 4. Line 350
beeps. Line 360 pauses. Line 370 erases the 4 by drawing
a green 4.

Line 380 draws a yellow 3 and line 410 erases it. Line
420 draws a 2 and line 450 erases it. Line 460 draws a 1
and line 490 erases it.

Couldn't the number of program lines from 300 to 490
be reduced by using subroutines? Yes! We've strung
things out just a bit so the logical sequence of operations
would be more clear.

Program lines 500 to 550 fly the rocket ship from the
bottom of the screen to the top, with sound effects. Line
500 gets the dot color information for the rectangle con
taining the rocket ship and stores that data in memory ar
ray X.

The FOR/NEXT loop in lines 510 and 550 cause the
PUT statement in line 520 to move the rocket ship picture
up the Y axis one notch at a time. At the same time, the
"nothing" stored in array Z is used by line 540 to erase the
lower rocket ship pictures. This is the same trick we used
earlier to make the rocket seem to fly smoothly up the
screen.

As the rocket reaches the top of the screen, a ghostly
martian flying saucer suddenly appears from nowhere
and fires a laser beam at the rocket, hitting the s_hip in the
tail section. Lines 600 to 620 draw the flying saucer
outline, with a sound effect.

Lines 700 to 760 create the laser cannon on the side
of the saucer, the bolt of laser light in a line across to the
rocket, and the effect of the hit on the rocket's tail. Line
760 freezes the action momentarily so you can see what
has happened.

The rocket ship is damaged and crashes. Lines 800 to
870 are the falling ship. Here, we simply repeat the rocket
shape twice, at lines 820 and 850 to show it on the way
down. Again, we take the long way to show how the pro
gram works. You may be able to shorten the program here

94

by using a FOR/NEXT loop to display the falling ship.
There must be some ground for the rocket to go

"splat" on. Lines 900 to 940 create that and display the
downed ship. Line 900 draws a ground line. Line 910
draws the broken rocket ship on the ground in red outline
and line 920 colors it in blue. Line 930 shows dust kicked
up by the rocket hitting the ground.

Finally, after everything has come to rest and the
music generated by line 940 has ended, the computer
awaits your key press. Line 1000 loops back to itself
forever until you press one of the keyboard keys. Press
BREAK to end the run or press any other key to repeat the
fllght and crash.

That's a lot of action in only 56 program lines. And,
using some ingenuity in trimming program lines by using
subroutines and FOR/NEXT loops, you might be able to
reduce the overall program to fewer than 50 lines. That's a
lot of graphic animation and sound in a small package!

It demonstrates the extreme power in the TRS-80
Color Computer's microprocessor and Extended Color
BASIC language. Words like DRAW, LINE, PAINT, PLAY,
SOUND, GET, PUT, CIRCLE, PMODE, PCLS, SCREEN,
DIM, LINE and INKEY$ set the color computer apart from
most others. These words gain their power from their
ability to combine in one BASIC word, instructions which
might require as much as 10 or 20 program lines in other
computers.

95

Color Graphics
Programs

Color Graphics Programs

This section includes a wide range of different color

graphics programs for your enjoyment. These programs
are designed to demonstrate the various BASIC words

used to create unusual screen displays and sounds. All

are short and easy to type in and run. You should try each

one. You'll like what you find.

99

Canadian Maple Leaf
Canadians are proud of their national symbol, the

maple leaf. Let's see what it takes to draw one on the color
computer video screen:

.10 DATA 1552,1584,1613,1615,1616,1617,1619
20 DATA 1645, 1646,1647,1648,1649,1650,1651
30 DATA 1677, 1678,1679,1680,1681,1682,1683
40 DATA 1709,1710,1711,1712,1713,1714,1715
50 DATA 1737,1741,1742,1743,1744,1745
60 DATA 1746,1747,1751
70 DATA 1766,1767,1768,1769,1770,1773,1774
80 DATA 1775,1776,1777,1778,1779
90 DATA 1782, 1783,1784,1785,1786
100 DATA 1798,1799,1800,1801,1802,1803
110 DATA 1805,1806,1807,1808,1809,1810,1811
120 DATA 1813,1814,1815,1816,1817,1818
130 DATA 1830, 1831,1832,1833, 1834,1835
140 DATA 1836,1837,1838,1839,1840�1841,1842
150 DATA 1843,1844,1845,1846,1847,1848,1849,1850
160 DATA 1861,1862,1863,1864,1865,1866,1867
170 DATA 1868,1869,1870,1871,1872,1873,1874,1875
180 DATA 1876,1877,1878,1879,1880,1881,1882,1883
190 DATA 1894,1895,1896,1897,1898,1899,1900
200 DATA 1901,1902,1903,1904,1905,1906,1907
210 DATA 1908,1909,1910,1911,1912,1913,1914
220 DATA 1927, 1928,1929,1930,1931,1932,1933
230 DATA 1934,1935,1936,1937,1938,1939
240 DATA 1940,1941,1942,1943,1944,1945
250 DATA 1960, 1961,1962,1963,1964,1965,1966
260 DATA 1967,1968,1969,1970,1971
270 DATA 1972,1973,1974,1975,1976
280 DATA 1993, 1994,1995,1996,1997,1998,1999
290 DATA 2000,2001,2002,2003
300 DATA 2004,2005,2006,2007
310 DATA 2026,2027,2028,2029,2030,2031,2032
320 DATA 2033,2034,2035,2036,2037,2038
330 DATA 2057,2058,2059,2060,2061,2062,2063
340 DATA 2064,2065,2066,2067
350 DATA 2068,2069,2070,2071
360 DATA 2088,2089,2090,2091,2092,2093

100

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

16(2)

17(2)

18(2)

190

20(2)

210

22(2)

230

240

370 DATA 2094,2095,2096,2097,2098,2099

380 DATA 2100,2101,2102,2103,2104

390 DATA 2128,2160,2192,2224,2256,2288

400 PMODE 1,1:PCLS:SCREEN 1,0

420 FOR 2=1 TO 240

430 READ L

440 P(W:E L, 255

450 NEXT Z

460 REBTORE

490 GOTO 420

Let's change things a bit. Here's the same solid-colormaple

leaf but now you can control its position on the screen by
pressing the up-arrow or down-arrow keys on the keyboard.
The leaf stays in the middle of the screen until you press one
of those arrow keys. It moves up when you press the up
arrow key and down when you press the down-arrow key.

DATA 1552,1584,1613,1615,1616,1617,1619

DATA 1645,1646,1647,1648,1649,1650,1651

DATA 1677, 1,678, 1679, 1680, 1681, 1682, 1683

DATA 1709,1710,1711,1712,1713,1714,1715

DATf'\ 1737, 1741,1742,1743,1744,1745

DATA 1746,1747,1751

DATA 1766,1767,1768,1769,1770,1773,1774

DATA 1775,1776,1777,1778,1779

DATA 1782,1783,1784,1785,1786

DATA 1798,1799,1800,1801,1802,1803

DATA 1805,1806,1807,1808,1809,1810,1811

DATA 1813,1814,1815,1816,1817,1818

DATA 1830,1831,1832,1833,1834,1835

DATA 1836,1837,1838,1839,1840,1841,1842

DATA 1843,1844,1845,1846,1847,1848,1849,1850

DATA 1861,1862,1863,1864,1865,1866,1867

DATA 1868,1869,1870,1871,1872,1873,1874,1875

DATA 1876,1877,1878,1879,1880,1881,1882,1883

DATA 1894,1895,1896,1897,1898,1899,1900

DATA 1901,1902,1903,1904,1905,1906,1907

DATA 1908,1909,1910,1911,1912,1913,1914

DATA 1927,1928,1929,1930,1931,1932,1933

DATA 1934,1935,1936,1937,1938,1939

DATA 1940,1941,1942,1943,1944,1945

101

250 DATA 1960,1961,1962,1963,1964,1965,1966

260 DATA 1967,1968,1969,1970,1971

270 DATA 1972,1973,1974,1975,1976

280 DATA 1993,1994,1995,1996,1997,1998,1999

290 DATA 2000,2001,2002,2003

300 DATA 2004,2005,2006,2007

310 DATA 2026,2027,2028,2029,2030,2031,2032

320 DATA 2033,2034,2035,2036,2037,2038

330 DATA 2057,2058,2059,2060,2061,2062,2063

340 DATA 2064,2065,2066,2067

350 DATA 2068,2069,2070,2071

360 DATA 2088,2089,2090,2091,2092,2093

370 DATA 2094,2095,2096,2097,2098,2099

380 DATA 2100,2101,2102,2103,2104

390 DATA 2128,2160,2192,2224,2256,2288

400 PMODE 1,1:PCLS:SCREEN 1,0

420 FOR Z=1 TO 240

430 READ L

440 PN·<E L+P, 255

450 NEXT Z

460 RESTORE

500 KY$==INKEY$

510 IF KY$="" THEN 500

520 IF ASC<KY$)=94 THEN P=P-128:GOTO 550

530 IF ASC(KY$)=10 THEN P=P+128:GOTO 550

5-•H'.l GOTO 500

550 SOUND 1,1:PCLS:GOTO 420

Here's our very finest Canadian Maple Leaf! With this
program you have true graphics artistry. There is an ever
changing pattern and color in the leaf:

10 DATA 1552,1584,1613,1615,1616,1617,1619

20 DATA 1645,1646,1647,1648,1649,1650,1651

30 DATA 1677,1678,1679,1680,1681,1682,1683

40 DATA 1709,1710,1711,1712,1713,1714,1715

50 DATA 1737,1741,1742,1743,1744,1745

60 DATA 1746,1747,1751

70 DATA 1766,1767,1768,1769,1770,1773,1774

80 DATA 1775,1776,1777,1778,1779

90 DATA 1782, 1783,1784,1785,1786

100 DATA 1798,1799,1800,1801,1802,1803

102

110 DATA 1805,1806,1807,1808,1809,1810,1811

120 DATA 1813,1814,1815,1816,1817,1818

130 DATA 1830,1831,1832,1833,1834,1835

140 DATA 1836,1837,1838,1839,1840,1841,1842

150 DATA 1843,1844,1845,1846,1847,1848,1849,1850

160 DATA 1861,1862,1863,1864,1865,1866,1867

170 DATA 1868,1869,1870,1871,1872,1873,1874,1875

180 DATA 1876,1877,1878,1879,1880,1881,1882,1883

190 DATA 189L�, 1895, 1896, 1897, 1898, 1899, 1900

200 DATA 1901,1902,1903,1904,1905,1906,1907

210 DATA 1908,1909,1910,1911,1912,1913,1914

220 DATA 1927,1928,1929,1930,1931,1932,1933

230 DATA 1934,1935,1936,1937,1938,1939

240 DATA 1940,1941,1942,1943,1944,1945

250 DATA 1960,1961,1962,1963,1964,1965,1966

260 DATA 1967,1968,1969,1970,1971

270 DATA 1972,1973,1974,1975,1976

280 DATA 1993,1994,1995,1996,1997,1998,1999

290 DATA 2000,2001,2002,2003

300 DATA 2004,2005,2006,2007

310 DATA 2026,2027,2028,2029,2030,2031,2032

320 DATA 2033,2034,2035,2036,2037,2038

330 DATA 2057,2058,2059,2060,2061,2062,2063

340 DATA 2064,2065,2066,2067

350 DATA 2068,2069,2070,2071

360 DATA 2088,2089,2090,2091,2092,2093

370 DATA 2094,2095,2096,2097,2098,2099

380 DATA 2100,2101,2102,2103,2104

390 DATA 2128,2160,2192,2224,2256,2288

400 PMODE 1,1:PCLS:SCREEN 1,0

410 FOR C=l TO 255

420 FOR Z=l TO 240

430 READ L

440 POKECL+512),C

4�H2l NEXT Z

460 RE:BTORE

470 SOUND 1,1

480 NEXT C

490 GOTO 410

Even perfection can be boring so let's change the leaf into

something else. Type in our first maple leaf program

103

and look at its non-changing color and non-moving image.
Now edit line 420 to change the number 240 to 117.
The resulting picture, after a RUN, will look like a castle
sitting on ground or a tramp steamer plying the high seas.

420 FOR Z=l TO 117

You can keep the leaf/castle/boat the same color but
change the background to yellow. Try this change to line
400:

400 PMODE 1,1:PCLS 2:SCREEN 1,0

Are The Stars Out Tonight?

10 PMODE 1, 1
2t] PCL.S
30 SCREEN 1,l

41i.'J FOR X:::• 1. TO 8

5l7.J Y=RND (8)

60 Z=RND(256):W=RND(192)

70 CIRCLE(Z,W>,X,Y

80 NEXT X

90 GOTO :30

Rainbow Popcorn Strings
10 PMODE 1, 1
20 PCl ... :3
J(Z1 SCFcEEN 1, 1.

4k1 Y=RND (B)

50 CIRCLE<Z,W),6,Y

60 IF PEEKC341)=247 THEN W=W-1

70 IF W<0 THEN W=0

80 IF PEEK(J42)=247 THEN W=W+1

90 IF W>191 THEN W=191

100 IF PEEK(343)=247 THEN Z=Z-1

110 IFZ<0 THEN Z=0

104

120 IF PEEK(344)=247 THEN 2=Z+1
130 IF 2>255 THEN 2=255
140 IF PEEK(345)=247 THEN PCLS
l�H:l GOTO 30
920
9:-.30 '
9'+121 '

q50 'CIRCLE<Z,W>,X,Y
960 'X MAX - 96 (0 TO 95)
970 'Y MAX - 8 (0 TO 8)
980 'W MAX - 192 (0 TO 191)
990 'Z MAX = 256 (0 TO 255)

The Tunnel

A mysterious, dark, long tunnel, as deep as your eye
can see. Bats, mice, rats, hidden doors.

Press B and a bat flies out toward you. Press M and a
mouse runs. Press R and a rat runs. Press D and a hidden
door opens and bats fly out. Press C and the door closes.
Roll your own fun. Imagine whatever you think might hap
pen in such a deep, dark tunnel and then make up a game
to go along with this video artform. The combinations of
possibilities are limited only by your imagination.

10 PMODE 2,1
?O PCLS
30 SCREEN 1, (/J
40 FOR A=l TO 115 STEP 2
50 CIRCLE(l28,96),A,l,.60
60 NEXT A
70 DRAW"BM43,187U20L6Rll" 'T
AO DRAW"BM58,187U20D10Rl0Ul0D20" 'H
90 DRAW"BM78,187RlOUOU10RlOL10

UlORlO" IE
100 DRAW"BM103,187U20L6Rll" 'T

110 DRAW"BM118,187U20D20RlOU20" 'U
l?O DRAW"BM138,J.87U20F20U20" 'N
130 DRAW"BM163,187U20F20U20" 'N

105

140 DRAW"BM188,187RlOL10UlOR10LlO
UlORlO" 'E

150 DRAW"BM208,187RlOLlOU20" 'L

160 A$=INKEY$
170 IF A$="" THEN 160
180 IF A$="B" THEN 300

190 IF AS="M" THEN 400
200 IF A$="R" THEN 500
210 IF A$="0" THEN 600
220 IF A$="C" THEN 800
230 GOTO 160
300 FOR L=4 TO 22 STEP 2 'FLYING BAT
310 S$=STR$.(L)
320 DRAW"S"+S$+"C0BM128,96E5F5E5F5"

I DRAWS BAT
330 DRAW"S"+S$+"ClBM128,96E5F5E5F5"

I ERASES BAT
340 DRAW"S"+S$"+C0BM128,96F5E5F5E5"

I WING FLAP s
350 DRAW"S"+S$+"ClBM128,96F5E5F5E5"

'ERASES FLAP
360 NEXT L
370 GOTO 160
400 FOR L=200 TO 61 STEP -5 'MOUSE MOVES
410 M$=STR$(L)

420 DRAW"S4C0BM"+M$+",140H5G5F5E5"
I DRAWS BODY

430 PAINT(L-2,140),0,0
440 DRAW"ClBM+M$+",140H5G5F5E5"

'ERASES BODY
450 PAINT(L-2,140),1,1
460 NEXT L
470 GOTO 160
500 FOR L=61 TO 200 STEP 10 'RAT MOVES
510 R$=STR$(L)
520 DRAW"S4C0BM"+R$+",140H5G5F5E5"

I DRAWS BODY
530 PAINT(L-2,140),0,0
540 DRAW"ClBM"+R$+" ,140H5G5F5E5"

I ERASES BODY
550 PAINT(L-2,140),1,1

106

'>60 NEXT L
'>70 GOTO 160
600 LINE(42,93)-(80,130),PRESET,BF 'DOOR
610 FOR JJ=l TO 125:NEXT JJ
620 DRAW"S4ClBMBM70,113E5F5E5F5" 'DRAWS

BAT
630 FOR JJ=l TO 125:NEXT JJ
640 DRAW"C0BM70,ll3ESF5E5F5"

'ERASES BAT
650 DRAW"ClBMSS,113F5ESFSE5"

'WINGS FLAP
660 FOR JJ=l TO 125:NEXT JJ
670 DRAW"C0BMSS,113FSESFSES"

'ERASES FLAP
680 DRAW"ClBM45,ll3E5F5" 'DRAWS PART
690 FOR JJ=l TO 125:NEXT JJ
700 DRAW"C0BM45,113E5F5" 'ERASES PART
710 GOTO 160
HOO PAINT(62,95),l,l 'DOOR CLOSES
HlO GOTO 160

Yellow Time Bomb Explodes

Yes, it's yellow. And, yes, it's a time bomb. But it has
one thing different: a built-in digital ,u
timer. You see 10 seconds count

'

down and then the bomb explodes
like a supernova. Yes, the fuse

does flicker!

10 PMODE 3,1
20 PCLS
30 SCREEN 1,0
40 CIRCLE(l90,130),50,4,.6
50 PAINT(l90,108),2,4
60 DRAW "BM190,102Rl5UlOL30DlOR15"
70 PAINT(l90,100),2,4
80 CIRCLE(l90,89),6,4.6

107

90 SOUND 200,1
100 PAINT(l90,89),2,4
110 CIRCLE(l92,84),6,4,.6
120 SOUND 205,1
130 PAINT(l92,84),2,4
140 CIRCLE(l94,79),6,4,.6
150 SOUND 210,1
160 PAINT(l94,79),2,4
170 CIRCLE(l92,74),6,4,.6
180 SOUND 215,1
190 PAINT(l92,74),2,4
200 FOR LL=l TO 5
210 DRAW "C2BM192,70NL5NH5NU5NE5NR5"
220 FOR L=l TO 150:NEXT L
230 DRAW "C4BM192, 70NL5NH5NU5NE5NR5"
240 FOR L=l TO 150:NEXT L
250 NEXT LL
260 DRAW "C2BM192,70NL5NH5NU5NE5NR5"
270 SOUND 200,1

280 DRAW "C4BM180,140U20BR10D20Rl0
U20Ll0"'TEN FOR L=l TO 500:NEXT L

300 DRAW "C2BM180,140U20BR10D20RlOU20Ll0"
'ERASE TEN

310 SOUND 180,l
320 DRAW "C4BM195,140U20LlOD10RlO"'NINE
330 FOR L=l TO 500:NEXT L
340 DRAW "C2BM195,140U20LlODlOR10"'

ERASE NINE
350 SOUND 160,1
360 DRAW "C4BM195,140U20LlOD10RlOL10

DlORlO"'EIGHT
370 FOR L=l TO 500:NEXT L
380 DRAW "C2BM195,140U20LlOD10RlOL10

DlORlO"'ERASE EIGHT
390 SOUND 140,l
400 DRAW "C4BM195,140U20LlO"'SEVEN
410 FOR L=l TO 500:NEXT L
420 DRAW "C2BM195,140U20Ll0"'

ERASE SEVEN
430 SOUND 120,1
440 DRAW "C4BM185,140RlOUlOL10UlOD20"'

SIX

108

450 FOR L=l TO 500:NEXT L
460 DRAW "C2BM185,140RlOU10LlOU10

D20"'ERASE SIX
470 SOUND 100,l
480 DRAW "C4BM185, 140RlOU12LlOU8Rl0"'

FIVE
490 FOR L=l TO 500:NEXT L
500 DRAW "C2BM185,140RlOU12LlOU8Rl0"'

ERASE FIVE
510 SOUND 90,l
520 DRAW "C4BM195,140U20DlOL10UlO"'FOUR
530 FOR L=l TO 500:NEXT L
540 DRAW "C2BM195.140U20Dl0Ll0Ul0"'ERASE

FOUR
550 SOUND 80,l
560 DRAW "C4BM195,140LlORlOU10LlOR10

UlOLlO"'THREE
570 FOR L=l TO 500:NEXT L
580 DRAW "C2BM195,140LlOR10UlOLlOR10

UlOLlO"'ERASE THREE
590 SOUND 60,l
600 DRAW "C4BM195,140LlOUlOR10UlOL10"

'TWO
610 FOR L=l TO 500:NEXT L
620 DRAW "C2BM195,140LlOU lOR 10 UlOL10"'

ERASE TWO
630 SOUND 40,l
640 DRAW "C4BM190,140U20"'0NE
650 FOR L=l TO 500:NEXT L
660 DRAW "C2BM190,140U20"'ERASE ONE
670 SOUND 20,15
680 PCLS
690 SCREEN 1,1
700 FOR R=l TO 500
710 CIRCLE(l95,130),R,4
720 NEXT R
730 GOTO 730

Spring Art

Here's a very, very nifty way to draw sketches with

109

lines which look for all the world like coiled springs. Us
ing this sketching program is a lot like the popular child's
erasable tablet for sketching. Draw designs, letters, and
tricky-looking things on the screen.

The spring starts in the center of the screen but you
can move its start point. Press space bar to have it start in
the upper left-hand corner of the video display. Press the
letter X key on your computer's keyboard to make it start
at the upper right-hand corner. Press Y for lower right
hand corner and Z for lower left-hand corner. Press two ar
row keys at the same time to make it move at special
angles or in curves. Move the tips of the spring by press
ing up, down, right or left arrow keys on the keyboard.

10 PMODE 1)1
20 PCLS
30 scr:::EEt·� 1 J (1

40 X=128=Y=96=M=247
50 IF.Y(1 THEN Y=1
60 IF Y>191 THEN Y=191
70 IF X<i THEN X=l
80 IF X>255 THEN X=255
90 CIRCLE(XJY)J10J4

100 PAINT(XJY),4)4
110 CIRCLE(A,8),10,1
130 IF PEEK(341)=M THEN A=X=B=Y=Y=Y-5

=GOTO '.50
14�'3 IF PEEK(342)=M THEt·-1 A=::<: B=Y: ''f'='r'+5

=GOTO 50

150 IF PEEK(343)=M THH4 B=''f' : F"i=::.:: : ;:-::::;:-::-5

=GOTO 50
160 IF PEEi<(:::M-4)=M THEl'-1 8=''f' = A=::-=:: :=-=:=::-=:+5

=GOTO 5[1

170 IF PEEi-((345)=M THEl'--1 F'CU:; : :•::= 10 : Y= 1 (1

:GOTO 5(1

180 IF PEEi<(3:::::::)=M THEt·4 PCL:3 : :•�=245 : Y= 10
=GOTO $;:I

t91Zt IF PEF..X•:: :::;;:::9)=M THa-1 PCLS=X=245=Y=181
:GOTO 512!

20�3 IF PEE�::< 340)=M THEl'--1 PCL::;: :=<:= 10: \'= 1 :31
=GOTO 521

110

,:'.1.0 GOTO 130

999 Hm

Kaleidoscope

Remember those round tubes you looked into? The col
ors danced and changed as you looked. Here's an elec
tronic version.

10 PMODE 1,1
20 PCLS
30 SCREEN 1,0

100 CIRCLE(l28,96),80,4
110 DRAW"C4BM128,96NU80NE55NR80

NF55ND80NG55NL80NH55"
?00 A=RND(4):B=RND(4)
?10 C=RND(4):D=RND(4)
?20 E=RND(4):F=RND(4)
?30 G�RND(4):H=RND(4)
300 PAINT(l30,89),A,4

310 PAINT(l40,94),B,4
320 PAINT(l40,98),C,4
330 PAINT(l30,101),D,4
340 PAINT(l26,101),E,4
350 PAINT(ll6,98),F,4
360 PAINT(ll6,94),G,4
370 PAINT(l26,89),H,4
400 P=P+PPOINT(l30,89)
410 P=P+PPOINT(l40,94)
420 P=P+PPOINT(l40,98)
430 P=P+PPOINT(l30,101)
440 P=P+PPOINT(l26,101)
450 P=P+PPOINT(ll6,98)
460 P=P+PPOINT(ll6,94)
470 P=P+PPOINT(l26,89)
500 IF P=32 THEN P=0:GOTO 20
'.:>l O P=0
520 GOTO 200

111

Porthole

Very cute. Very colorful. There's a porthole with blue
water visible outside. Fish swim by. Press any key to
close the porthole. Press any key to open it. Very neat!

10 PMODE 1,1
20 PCLS
30 SCREEN 1,0
40 FOR L=l TO 1000000
50 CIRCLE(l00,96),40,2
60 PAINT(l00,134),3,2
70 LINE(50,46)-(150,146),PSET,B
80 PAINT(l55,195),2,4
90 PAINT(l45,140),4,2

100 DRAW"C4BM25,l 76U20Rl0D10Ll0" 'P
110 DRAW"C4BM45,l 76U20Rl0D20Ll0" '0
120 DRAW"C4BM65,176U20Rl0D10Ll0Fl0" 'R
130 DRAW"C413M90,176U20L6Rll" 'T
140 DRAW"C4BM105,l 76U20D10Rl0Ul0D20" 'H
150 DRAW"C4BM125,176U20Rl0D20Ll0" 'O
160 DRAW"C4BM145,l 76RlOLlOU20" 'L
170 DRAW"C4BM165,176RlOL10UlORlOL10

Ul ORl_O II I E
180 DRAW"C2BM125,96Hl2G8F8El2"

'FISH
190 FOR LL=l TO 125:NEXT LL
200 DRAW"C3BM125, 96Hl2G8F8El2"

I ERASE FISH
210 DRAW"C2BM105,96Hl2G8F8El2" 'FISH
220 FOR LL=l TO 125:NEXT LL
230 DRAW"C3BM105,96Hl2G8F8El2" 'ERASE FISII
240 DRAW"C2BM70,96H4E4" 'FISH TAIL
250 FOR LL=l TO 125:NEXT LL
260 DRAW"C3BM70, 96H4E4" 'ERASE FISH TAIL
270 A$=INKEY$
280 IF A$="" THEN NEXT L
290 PAINT(l00,58),4,2
300 B$=INKEY$
310 IF B$="" THEN 300
320 GOTO 40

112

Red-n-Green Muncher

A fat red-and-green Muncher. IJYhen you type in this
program and RUN it, you'll find Muncher burping quietly
in the upper left-hand corner of his cage. He's just sitting
there, fat and happy having recently eaten all the little
Yellow Squeekies you fed him.

You can take Muncher for a walk around his cage-a
very large room actually-by pressing the arrow keys on
the keyboard. Press the key with the arrow pointing the
direction you want Muncher to move.

All that exercise will make Muncher hungry again so
you must prepare to feed him. When you lift the feeding
door-by pressing the space bar on the computer
keyboard-the Muncher's favorite food will run in. Now,
press the space bar. First one, then two, then four, soon a
dozen Yellow Squeekies appear all over the screen. The
longer you hold down the space bar, the more Squeekies
you give to Muncher.

Notice how the Squeekies attack Muncher and cart
off parts of his body. No need to worry. Press any arrow
key to make Muncher move away from the Squeekies and
you'll see his whole body again.

When you have enough Squeekies in Muncher's
cage, release the space bar. You will have made Muncher
very happy. He always likes to have a fresh supply of
Squeekies to chase around the room. Use the various ar
row keys to drive Muncher around his cage, cleaning up
the remaining Yellow Squeekies.

By the way, you'll notice Muncher can't get out of his
cage. He beeps a lot when bouncing against the edges
but he can't get out. And, speaking of beeping, Muncher
honks while driving around his cage and the Yellow
Squeekies do ... well, they squeek.

Pressing any other keys during the game won't result
in anything. Except when you want to quit the game. Then
press the BREAK key. A great game to teach your
preschoolers colors, sounds, directions.

1121 CLERF:: = CU:;

20 F'==P+fl
30 IF P=-1 THEN SOUN� 150,i=P=0

113

40 IFP(0 THEN SOUND 150,1=P=P+32

50 IF P=412 THEN SOUND 150,1=F=411

60 IF P>411 THEN SOJND 150,l=P=P-32

70 FOR PX=29 TO 381 STEP 32

80 IF P=PX THEN SOJND 150,l=P=PX-1

90 NEXT PX

100 FOR PY=31 TO 383 STEP 32

110 IF P=PV TH�N SOUND 1S0,1=P=PY+1

120 NEXT PY

130 PRINT@ P,STRING$(4,182)

140 PRINT@ P+32,STRING$(4,182)

150 PRINT I P+64,STRING$(4,182)

160 IF PEEK(341)=247 THEN 400

170 IF PEEK(342)=247 THEN 500

180 IF PEEK(343)=247 THEN 600

190 IF PEEK(344)=247 THEN 300

200 IF PEEK(345)=247 THEN 700

210 GOTO 160

300 PRINT� P,STRING$(4,143)

310 PRINT@ P+32,STRING$(4,143)

320 PRINf@ P+64,STRING$(4,143)

330 SOUND 1,1

340 A=i

350 GOTO 20

400 PRINT m P,STRINGS(4,143)

410 PRINT@ P+32,STRING$(4,143)

420 PRINT@ P+64,ST�INGS(4,143)

43� SOUND 1,1

440 A=-32

450 GOTO 20

500 PRINT ij P,STRING$(4,143)

510 PRINT� P+32,STRING$(4,143)

520 PRINT� P+64,STRING$(4,i43)

530 SOUND 1,1

540 A=32

550 GOTO 20

600 PRINT@ P,STRING$(4,143)

610 PRINT� P+32,STRING$(4,143)

620 PRINT@ P+64,STRINGS(4,143)

E30 SOUND 1,i

640 A=-1

650 GOTO 20

114

?�112, :;,:s=i;;:t•mr:: 411 >

710 PRINT@ RS,CH�$(159)

?2(1 ::;Ot_il-·lD 2:35 ., 1

?:30 GOTO 160

Blinking Man

He blinks his eye, closes his eye, smiles, frowns. And
he wears an interesting hat.

Press C on the keyboard to close
the eye. Press O to open it. Press B
to make him wink. Press S for a quick
smile and press F for a momentary

frown.

10 PM0DE 3,1
20 PCLS
30 SCREEN 1,0
40 CIRCLE(l90,130),50,4,.6
50 CIRCLE(l90,99),50,4,.05
60 PAINT(l90,99),2,4
70 CIRCLE(l70,120),9,4
80 CIRCLE(205,120),9,4
90 PAINT(l70,120),3,4

100 PAINT(205,120),3,4
110 CIRCLE(l90,130),4,4,3
120 CIRCLE(l90,146),25,4,.l
130 PAINT(l90,146),4,4
140 CIRCLE(l88,95),25,4,.2
150 PAINT(l88,95),2,4
160 CIRCLE(l88,90),25,4,.2
170 PAINT(l88,90),2,4
180 CIRCLE(l86,85),25,4,.2
190 PAINT(l86,85),2,4
200 CIRCLE(l88,80),25,4,.2
210 PAINT(l88,80),2,4
220 CIRCLE(l90, 75),25,4, .2
230 PAINT(l90,75),2,4
240 CIRCLE(l92, 70),25,4, .2
250 PAINT(l92,70),2,4

115

260 CIRCLE(l94,65),25,4,.2
270 PAINT(l94,65),2,4
280 CIRCLE(l92,60),25,4,.2
290 PAINT(l92,60),2,4
300 CIRCLE(l90,55),25,4,.2
310 PAINT(l90,55),2,4
320 PAINT(l90,135),2,4
330 PAINT(l90,155),2,4
3 40 A $=INK E Y $
350 IF A$="" THEN 340
360 IF A$="0" THEN PAINT(205,120),3,4

:GOTO 340

370 IF A$="C" THEN PAINT(205,120),2,4
:GOTO 340

380 IF A$="B" THEN PAINT(205,120),2,4
:FOR L=l TO 125:NEXT L
:PAINT(205,120),3,4:GOTO 340

390 IF A$="S" THEN DRAW "C4BM170,144H5"
:DRAW "C4BM210,144E5":FOR L=l TO 500
:NEXT L:DRAW "C2BM170,l44H5"
:DRAW "C2BM210,144E5":GOTO 340

400 IF A$="F" THEN DRAW "C4BM170,144G5"
:DRAW "C4BM210,144F5":FOR L=l TO 500
:NEXT L:DRAW "C2BM170,144G5"
:DRAW "C2BM210,144F5":GOTO 340

410 GOTO 340
420 GOTO 420

Civi I ization

We like to contemplate the history of mankind and
civilization as we watch this artform develop.

10 PMODE 1,1
20 PCLS
30 SCREEN 1,0
40 X=RND(255):Y=RND(l91):C=RND(4)
50 X$=STR$(X):Y$=STR$(Y):C$=STR$(C)
60 DRAW"C"+C$+"BM"+X$+","+Y$+"

U20R20D20L20"
70 GOTO 40

116

Red Worm

The blob starts in the center of your video screen. As
you move it around-at any angle you wish-it inches
along like a fat, red worm.

Use the red worm to create new and unusual
graphics designs or lettering. Even script.

If you prefer to start in the upper left-hand corner of
the screen, press the space bar. The blob will jump to the
new start location. Or press the letter X on the keyboard
for a start in the upper right-hand corner of the screen.
Press Y for the lower-right hand corner. Press Z for the
lower left-hand corner. You can push two arrow keys at
the same time and use them to move at angles and in
curves.

Draw shapes. Draw letters. Write names. Whatever
you imagine. The red inchworm on green background is
very cute as he slowly moves along. To take your worm for
a walk, hold down either the left or right arrow key. Then
repeatedly press and release either the up or down arrow
key. The worm appears to sway forward.

The worm can't go off the screen as error traps are
built into the program for all four edges. You can make the
worm narrower in size by making the radius of his original
circle smaller. That's the number 10 in line 90. Make the
radius larger and the worm will grow even fatter.

Call it a worm, a sketcher, whatever. It looks like
toothpaste being squeezed out of a tube onto the face of
your TV set. Create your own maze. Write messages.

10 F'MODE 1)1

20 F'CLS

30 SCF.:EEt·◄ 1 ., 0

40 X=128=Y=96:M=247

50 IF Y<l THEN Y=l

60 IF Y>i91 THEN Y=191

70 IF X<l THEN X=1

80 IF X>255 THEN X=255

90 CIRCLECX,Y))10)4

100

110

120

IF

IF

IF

F'EEK(341)=M THEr•◄

PEEK(:34,"::)=M THE�4

PEEK(:34:3)=M THn-◄

\'='r'-1 : G(ITO 50

\'='·,'+1 = GOTO 5i;::1

; ... �=:�::-1 = GOTO 5�:,

117

130 IF PEEK(344)=M THEN X=X+i:GOTO 50

140 IF PEEK(345)=M THEN PCLS:X=10:Y=10

:GOTO 50

150 IF PEEKC338)=M THEN PCLS,X=245,Y=10

:GOTO 50

160 IF PEEKC339)=M THEN PCLS:X=245:Y=181

: GOTO 512l

170 IF PEEK(340)=M THEN PCLS:X=10:Y=181

, GOTO 5��

18�3 GOTO lm)

999 El··m

Waving Woman

Wonderful Wanda is happy. She likes the fact that you
took the time to run her little program.

10 PCLS
20 SCREEN 1,(/J
30 PMODE 1,1
40 CIRCLE(l28,50),30,4 'HEAD
50 CIRCLE(l20,40),5,4 'LEFT EYE
60 CIRCLE(l36,40),5,4 'RIGHT EYE
70 DRAW"C4BM127,50D3F3G3" 'NOSE
80 LINE(ll0,65)-(146,65),PSET 'MOUTH
90 LINE(l28,80)-(128,60),PSET 'TORSO

100 DRAW"C4BM128,160G40L20" 'LEFT LEG
110 DRAW"C4BM128,160F40R20" 'RIGHT LEG

120 DRAW"C4BM128,105L20D40NE10
NRlONFlONDlONGlO" 'LEFT ARM

130 DRAW"ClBM128,105R60NHlONU10
NElONRlONFlO" 'ERASE LOWERED ARM

140 DRAW"C4BM128,105R20E40NH10
NUlONElONRlONFlO" 'RIGHT ARM HI

150 FOR LL=l TO 200:NEXT LL
160 DRAW"ClBM128,105R20E40NHlONU10

NElONRlONFlO" 'ERASE RIGHT ARM HI
170 DRAW"C4BM128,105R60NH10NU10NE10

NRlONFlO" 'LOWER ARM
180 FOR LL=l TO 200:NEXT LL
190 GOTO 130

118

Color Popper

Here's great fun for the very young! Watch bright col•
ors and listen to their special sounds all day.

The active computer-keyboard keys are B, G, R, Y,
CLEAR-key and BREAK-key. Nothing happens If other
keys are pressed.

Type it into your computer and RUN it. Press the let
ter B on the keyboard and blue popcorn appears all over
the screen. Beeping as it pops.

Press R for red popcorn and Y for yellow popcorn.
Pressing G gives green popcorn but it is invisible against
the green screen background.

You can change the background color to whatever
the last popcorn color was. Pressing the CLEAR key
removes everything from the screen and changes the
screen color to whatever the color of the last popcorn
was.

Each key press causes a beep, whether popping corn
or clearing the screen. Pressing the BREAK key ends the
game.

Noise and bright colors are fascinating to watch.
Each popcorn key and the CLEAR key have slightly dif
ferent sounds. Popcorn appears at random positions
across and up and down the screen.

By the way, if the background is any color other than
green, the popcorn will appear at the end of long arms giv
ing an unusually different look to the screen. To remove
this appearance, press G to get green as the last popcorn
color and then press CLEAR to get a green background.

10 CLE1=iF: : CL:::

20 IF PEEK(240)=254 THE� 103

30 IF PE�K(345)=254 THEN 200

40 IF PEEK(340)�251 THEN 300

50 IF PEEK(339)=247 THEN 400

60 I� PE�K(33?)=191 THEN 500

70 GOTC 2121

10121 r.;:E:=F:;:i·1[:< :SJ. 1 ::,

11121 Ct:=" E:LUE"

120 PRINT@ �B.CHR$(175)

119

140 GOTO ;::�1
;::�3�:1 f.::G==Rt-m,:: :- :l 1 >
;:: 10 C:t= "GF::EEi··� ''
220 PRINT@ RG,CHR$(143)

3�3��1 i::::r-:;:=F::r·m< 511)
:::: 1 �3 C:t==" ;::;:Ee:,"
320 PRINT@ �R,CHR$(191)
3�:0 ::;;our-m 1 75 .• 1
:34i;;:1 GOTO �:�'3
41;;:10 F.:Y=mmi:: 511 >
41 �3 C:t-=" ''f°EL.i_OL,J ''
420 P�INT@ RY,CHR$(159)
4:30 SOUl·•m ;::�30 .• i
440 GOTO 2(1
51?.1�3 IF C$= "Gri:EF.1-◄" THEi'-J CL:3 1
510 IF C:$= 11 YELLOl.rl" Tl-iF..}� CU:: ::::
520 IF C:$= "BLUE" THE�•i CU:: 3
5:30 IF C:t.=" f::'.ED II THE}� c:;_:; 4

550 GOTO 20

Chinese Water Torture

Bonkers! That's what you'll be if you watch and listen
· attentively to this program run for five minutes.

10 CLS
2 0 FOR X= 0 TO 6 3

30 Y=l5
40 RESET 0<,Y)
50 NEXT X
60 FOR Y=0 TO 31
70 X=31
80 RESET (X,Y)
90 NEXT Y

100 SOUND 1,1
110 PRINT
120 GOTO 20

120

Appendix

ABS
ASC
CHA$
EOF
INKEY$
INT
JOYSTK
LEFT$
LEN
MEM
MID$
POINT
RIGHT$
SGN
SIN
STA$
VAL
VARPTR

ATN
cos

EXP
FIX
HEX$
LOG
PEEK
POS
PPOINT
STRING$
SOR
TAN
TIMER
USRn

AUDIO
CLEAR
CLOAD
CLOSE
CLS
CONT
CSAVE
DATA

122

Functions

Color BASIC Functions

Finds absolute value
Finds ASCII number of first character of string
Finds character from ASCII, control or graphics code
Finds whether end of a file has been read
Finds keyboard key being pressed
Changes a number to Its integer
Finds coordinates of joysticks
Finds left portion of string
Finds length of a string
Finds amount of memory left
Finds a portion of a string
Tells whether graphics point is on or off and its color
Finds right-hand portion of a string
Tells whether number Is negative, positive or zero
Finds sin e of an angle
Changes a number to a string
Changes a string to a number
Finds pointer address

Extended Color BASIC Functions

Finds arctangent
Finds cosine of an angle
Finds natural exponential of a number
Truncates decimal number to whole number
Converts decimal number to hexadecimal
Finds natural logarithm
Finds contents of a memory location
Finds print position
Tells whether graphics-screen point is on and its color
Finds string of characters as specified
Finds square root of a number
Finds tangent of an angle
Sets and reads time
Starts machine-language subroutine

Statements

Color BASIC Statements

Connects cassette recorder to television
Erases variables and reserves string storage
Loads program from cassette
Closes an open file
Clears display
Continues program run after BREAK or STOP
Saves program on cassette tape
Stores data in a program

DIM
END
EXEC
FOR/
TOI

STEP/
NEXT/
GOSUB
GOTO
IF/
THEN/
ELSE

INPUT
INPUT#-1
LIST
LUST
MOTOR
NEW
ON/
GOSUB
ON/
GOTO
OPEN
POKE
PRINT
PRINT#-1
PRINT#-2
PRINT@
READ
REM
RESET
RESTORE
RETURN
RUN
SET
SKIPF
SOUND
STOP

CIRCLE
CLOADM
COLOR
CSAVEM
DEF FN
DEFUSR
DEL
DLOADM

DRAW
EDIT
GET
INSTR

Dimensions arrays
Concludes the program
Gives control to machine-language program

Creates a loop
Moves program execution to a subroutine
Moves program execution to specified line number

Performs test, executes one action if true, another If
false
Computer stops and waits for keyboard input
Brings in data from cassette tape recorder
Displays program lines
Prints program lines on printer
Turns cassette recorder on or off
Erases all programs in memory

Moves program execution to specified subroutines

Moves program execution to various line numbers
Opens a file
Deposits a value into a memory location
Prints letters, numbers, symbols on TV screen
Writes data on a cassette tape
Prints letters, numbers, symbols on a printer
Prints message at particular text-screen location
Reads DATA line
Permits comments in program lines
Resets a point
Sets computer back to first data-line item
Brings execution back from subroutine
Executes program
Sets a text-screen point
Moves to next cassette-tape program
Makes tone of specific length
Stops program execution

Extended Color Basic Statements

Draws a circle
Loads machine-language program from tape
Sets foreground and background color
Files a machine-language program on tape
Creates numeric function
Selects entry point for USR function
Deletes program lines
Loads machine-language program at baud rate
specified
Draws a line
Permits editing of program lines
Stores graphics in a screen rectangle into an array
Searches for a target string

123

LET
LINE

Assigns value to a variable
Draws a line and boxes

LINE INPUT
MID$

Computer waits for keyboard Input
Different from Color-BASIC MID$. Replaces a string
Colors graphic screen PAINT

PCLEAR
PCLS
PCOPY
PLAY

Reserves memory for graphic pages
Clears graphic screen
Coples from one graphics page to another
Performs music

PMODE
PRESET
PRINT USING
PSET

Selects graphics resolution and memory page
Resets a graphic-screen point to background color
Prints numbers, letters, symbols In specified format
Sets a graphic-screen point to a color

PUT Displays graphics array obtained through GET state•
ment

RENUM
SCREEN
TROFF

Renumbers program lines
Selects color set and graphics or text screen
Permits tracing of program execution

TRON Stops tracing of program execution

Operators

t Exponent
Negative

+ Positive
Multiplication
Division

+ Addition
Subtraction

< Less than
> More than

= Equal to
< = Less than or equal to
> = More than or equal to

< > Not equal to
NOT
AND

OR

Video Control Codes
Oaclmal Hexa- PRINT CHAS (Coda)

124

8

13
32

decimal

,08

,0'D
w

Backspaces and erases current
character
Line feed with carriage return
Space

Graphic-Character Codes
Using the color number, 1 to 8, and the pattern number, zero to 15,

here's how to generate the correct code:

code = 128 + 16 * (color - 1) + pattern

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+-

SHIFT+
BREAK
CLEAR
ENTER
SPACEBAR

Control Keys
Deletes last character; moves cursor back one
space
Erases current line
Interrupts process and returns control to you
Clears the screen
Indicates end of current line
Enters a blank character and moves cursor one
space

SHIFT@

SHIFT ,0

Causes program RUN to pause; press any key to
continue
Changes keyboard to upper-and-lowercase

Special Characters
Abbreviation for REM

$ Makes a variable a string variable
Separates statements on the same program line

? Abbreviation for PRINT
PRINT punctuation; spaces over to mid-screen
PRINT punctuation; prints separate items with no spaces between

Error Messages

10 Division by zero
AO File already open
BS Subscript out of range
CN Cannot continue
DD Redimensioned array
DN Device-number error
DS Direct statement in file
FC Illegal function call
FD Bad file data
FM Bad file mode
ID Illegal direct
IE Input past end of file
1/0 Input/output error

LS String toolong
NF NEXT without FOR
NO File not open
OD Out of data
OM Out of memory
OS Out of string space
OV Overflow
RG RETURN without GOSUB
SN Syntax error
ST String formula too complex
TM Type mismatch
UL Undefined line

125

AND89
angle 74
animation 85
applications software 18
array 87

background 54, 60
bar graph 33
BF box 38
border color 36, 61, 72
BREAK 23

CHR$ 26
CIRCLE 79
CLS 23, 53

color 49
COLOR 60
color numbers 34,50, 57
color set 55

DATA 29
DIM 88
DRAW65

end point 79
erasing lines 38, 52

foreground 60

Index

no update 69

OR89
output 17

page 38
PAINT 72
PCLEAR 39
PCLS 38, 54
PCOPY 41
PLAY93
PMODE 39, 56
POKE 22,27
position 24, 66
PPOINT 56
PRESET 49
PRINT@ 26
processor 17
PSET 49
PUT86

radius79
rectangle 87
relative position 70
RESET 22, 27, 50
resolution 18

freeze frame 28, 31, 35 , 36, 40, 61

resolution, low-18, 26
resolution, medium 18, 43
resolution, high 18, 36, 81
rocket ship 86 71,75, 77,80,85,90

GET86
graphics mode 20,35
graphics screen 21
graph paper 23
grid 18

heighth-width ratio 79

illlusion 85
INKEY$ 93
input 17

LINE 36
line string 65

memory 17
motion instructions 67

NOT 89

126

rotation 74

scale 76
SCREEN 21, 35,55
screen garbage 35
SOUND 92
start page 39
start point 79
STRING$ 34
system software 18

text mode 20

update 69

video memory 27

X,Y position 24

Z array 90

books from ARCsoft Publishers

For the TRS-80 PC-1, PC-2, Sharp PC-1211, PC-1500:

99 Tips & Tricks for the New Pocket Computers (PC-2/PC-1500)
128 pages $7.95 ISBN 0-86668-019-5

101 Pocket Computer Programming Tips & Tricks
128 pages $7.95

Pocket Computer Programming Made Easy
128 pages $8.95

ISBN 0-86668-004-7

ISBN 0-86668-009-8

Murder In The Mansion and Other Computer Adventures
96 pages $6.95 ISBN-0-86668-501-4

50 Programs in BASIC for Home, School & Office
96 pages $9.95 ISBN 0-86668-502-2

50 MORE Programs in BASIC for Home, School & Office
96 pages $9.95 ISBN 0-86668-003-9

35 Practical Programs for the Casio Pocket Computer
96 pages $8.95 ISBN 0-86668-014-4

Pocket-BASIC Coding Form programming worksheet tablets
40-sheet pad $2.95 ISBN 0-86668-801-3

For the TRS-80 Color Computer:

101 Color Computer Programming Tips & Tricks
128 pages $7.95 ISBN 0-86668-007-1

55 Color Computer Programs for Home, School & Office
128 pages $9.95 ISBN 0-86668-005-5

55 MORE Color Computer Programs for Home, School & Office
112 pages $9.95 ISBN 0-86668-008-X

Color Computer Graphics
128 pages $9.95

The Color Computer Songbook
96 pages $7.95

My Buttons Are 11Iue and Other Love Poems
96 pages $4.95

ISBN 0-86668-012-8

ISBN 0-86668-011-X

ISBN 0-86668-013-6

Color Computer BASIC Coding Form program worksheet tablets
40-sheet pad . $2.95 ISBN 0-86668-802-1

For the APPLE Computer:

101 APPLE Computer Programming Tips & Tricks
128 pages $8.95 ISBN 0-86668-015-2

33 New APPLE Computer Programs for Home, School & Office
96 pages $8.95 ISBN 0-86668-016-0

APPLE Computer BASIC Coding Form program worksheet tablets
40-sheet pad $2.95 ISBN 0-86668-803-X

For the ATARI 400 and 800 computers:

101 ATARI Computer Programming Tips & Tricks
128 pages $8.95 ISBN 0-86668-022-5

31 New ATARI Computer Programs for Home, School & Office
96 pages $8.95 ISBN 0-86668-018-7

ATARI Computer BASIC Coding Form program worksheet tablets
40-sheet pad $2.95 ISBN 0-86668-806-4

127

books from ARCsoft Publishers

For the Sinclair ZX-81 and TIMEX/Sinclair 1000 computers:

101 TIMEX 1000 and Sinclair ZX-81 Programming Tips & Tricks
128 pages $7.95 ISBN 0-86668-020-9

37 TIMEX 1000 & Sinclair ZX-81 Programs for Home, School & Office
96 pages $8.95 ISBN 0-86668-021-7

TIMEX 1000 & Sinclair ZX-81 BASIC Coding Form program worksheets
40-sheet pad $2.95 ISBN 0-86668-807-2

For the electronics hobbyist:

25 Quick-N-Easy Electronics Projects
96 pages $4.95

25 Electronics Projects for Beginners
96 pages $4.95

ISBN 0-86668-023-3

ISBN 0-86668-017-9

25 Easy-To-Build One-Night & Weekend Electronics Projects
96 pages $4.95 ISBN 0-86668-010-1

Computer program-writing worksheets:
Each in tablet of 40 sheets with stiff backing

Universal BASIC Coding Form
IBM p_ersonal Computer BASIC Coding Form
ATARI Computer BASIC Coding Form
Pocket Computer BASIC Coding Form
APPLE Computer BASIC Coding Form
Color Computer BASIC Coding Form
TIMEX 1000/Sinclair ZX-81 BASIC Form

ISBN: International Standard Book Number

128

ARCsoft Publishers
Post Off Ice Box 132

Woodsboro, Maryland 21798

$2.95
$2.95
$2.95
$2.95
$2.95
$2.95
$2.95

Color Computer Book VI

Color Computer Graphics

by Ron Clark

$9.95

If you have a personal computer and want to do video graphics,
you must have this handbook. It is the one complete introduction, writ
ten in an easy-to-read format for folks of all ages and all walks of life.
The simple down-to-earth language in this learn-by-doing instruction
guide starts at the very beginning and covers all the elements you
need to know to be able to design and execute exciting new graphics
for your computer video screen.

Written in Color Basic and Extended Color BASIC for the TRS-80
Color Computer, this complete coverage Includes a thorough In
troduction to CIRCLE, PAINT, DRAW, LINE, COLOR, SCREEN, POKE,
SET, RESET, PCLEAR, PSET, PPOINT, PCLS and many more of the
powerful BASIC graphics words. All programs have been thoroughly
tested on the TRS-80 Color Computer.

Learn all about low, medium and high-resolution graphics, and
how to create each. See the difference between text and graphics
modes. Find out how to set up your computer for graphics program
ming. Change screen colors, make animation, turn on sound and
music too!

Draw curves, ovals, arcs, angles, boxes, figures, games, fine arts,
even flowers. You'll quickly understand exactly how to use the power
ful BASIC-language words built Into your computer to write software
to reproduce beautiful graphics In nine colors on your computer's
video screen.

Basic instruction In this book Is applicable to graphics, with only
minor changes in program lines, on TRS-80 Model 1/11/111/16, Apple 11/111,
Atari 4001800, Commodore, Vic, Pet, Slnclalr ZX-81, Micro Aoe, Timex
1000, and many others. IBM Personal Computer owners wlll find
graphics commands here almost Identical to those used by their PCs
so these programs wlll easily run on the IBM PC. Everything you need
to know to get started In color computer graphics.

ARCsoft Publishers
WOODSBORO, MARYLAND

ISBN 0-86668-012-8

	0
	1
	2
	3
	4
	5.5
	5
	6
	7
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130

